
Dylan Reference Manual
Draft, September 29, 1995

Apple Computer, Inc.
© 1992–1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating
into another language or format.
You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this

manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
LaserWriter, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe Illustrator, Adobe
Photoshop, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered
service mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Docutek is a trademark of Xerox
Corporation.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
Internet is a registered trademark of
Digital Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Mercutio MDEF from Digital
Alchemy. Copyright ©Ramon M.
Felciano 1992-1995, All Rights
Reserved

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Preface

About This Book

ix

Chapter 1

Introduction

1

Background and Goals 3
Language Overview 4
Manual Notation 6

Chapter 2

Syntax

7

Overview 9
Libraries and Modules 9
Bindings 10
Macros 10
Bodies 11
Definitions 11
Local Declarations 12
Expressions 13
Statements 15
Parameter Lists 16
Lexical Syntax 16
Special Treatment of Names 19
Top-Level Definitions 20
Dylan Interchange Format 21
Naming Conventions 22

Chapter 3

Program Structure

25

Modules 27
Libraries 28

This document was created with FrameMaker 4.0.4

iv

Chapter 4

Program Control

31

Overview 33
Function Calls 33
Operators 35
Assignment 37
Conditional Execution 39
Iteration 40
Non-Local Exits and Cleanup Clauses 41
Multiple Values 41
Order of Execution 43

Chapter 5

Types and Classes

45

Overview 47
The Type Protocol 47
Classes 50
Slots 55
Instance Creation and Initialization 63
Singletons 70
Union Types 71
Limited Types 72

Chapter 6

Functions

75

Overview 77
Parameter Lists 82
Method Dispatch 93
Operations on Functions 98

Chapter 7

Conditions

99

Background 101
Overview 103
Signalers, Conditions, and Handlers 103

v

Exception Handling 105
Condition Messages 111
Introspective Operations 112

Chapter 8

Collections

113

Overview 115
Collection Keys 116
Iteration Stability and Natural Order 116
Mutability 117
Collection Alteration and Allocation 117
Collection Alignment 118
Defining a New Collection Class 119
Tables 120
Element Types 122
Limited Collection Types 124

Chapter 9

Sealing

129

Overview 131
Explicitly Known Objects 131
Declaring Characteristics of Classes 132
Declaring Characteristics of Generic Functions 133
Define Inert Domain 133

Chapter 10

Macros

139

Overview 141
Extensible Grammar 144
Macro Names 146
Rewrite Rules 147
Patterns 148
Pattern Variable Constraints 154
Templates 156
Auxiliary Rule Sets 158

vi

Hygiene 159
Rewrite Rule Examples 161

Chapter 11

The Built-In Classes

181

Overview 183
Objects 183
Types 185
Simple Objects 190
Numbers 192
Collections 199
Functions 229
Conditions 234

Chapter 12

The Built-In Functions

243

Overview 245
Constructing and Initializing Instances 246
Equality and Comparison 254
Arithmetic Operations 261
Coercing and Copying Objects 274
Collection Operations 281
Reflective Operations on Types 331
Functional Operations 334
Function Application 339
Reflective Operations on Functions 340
Operations on Conditions 346

Chapter 13

Other Built-In Objects

355

Other Built-In Objects 357

vii

Chapter 14

The Built-In Macros and Special Operators

359

Overview 361
Definitions 361
Local Declarations 377
Statements 382
Special Operators 397

Appendix A

BNF

401

Lexical Grammar 402
Phrase Grammar 407

Glossary

419

Index

431

viii

ix

P R E F A C E

About This Book

This book is a draft of the Dylan Reference Manual.

It contains the complete language description, incorporating all language
design decisions made to date (September, 1995).

The book is a draft because it has not undergone final review or proofreading.
It is, however, believed to be complete.

The book is designed as specification and reference for the Dylan language. It is
not designed as a tutorial. Programmers who wish to learn Dylan may want to
begin with a book written for that purpose before moving on to this volume.

The book is divided into three parts: the first part contains a number of concept
chapters describing the overall structure and semantics of the language; the
second part contains reference chapters describing every class, function, and
syntactic construct in the language; the third part contains the BNF for Dylan’s
syntax and a glossary of terms.

This document was created with FrameMaker 4.0.4

x

P R E F A C E

CHAPTER 1

Contents

1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction

Background and Goals 3
Language Overview 4
Manual Notation 6

This document was created with FrameMaker 4.0.4

C H A P T E R 1

2

Contents

C H A P T E R 1

Background and Goals

3

Introduction 1

Background and Goals 1

Dylan is a general-purpose high-level programming language, designed for
use both in application and systems programming. Dylan includes garbage
collection, type-safety, error recovery, a module system, and programmer
control over runtime extensibility of programs.

Dylan is designed to allow efficient, static compilation of features normally
associated with dynamic languages.

Dylan was created out of the belief that programs have become too complex for
traditional static programming languages. A new generation of software—
software that can be built quickly and enhanced over time—requires
higher-level programming tools. The core of these tools is a simple and
expressive language, one which protects the programmer from low-level
implementation details, but still produces efficient executables.

Dylan was designed from the ground up with a thoroughly integrated object
model, syntax, and control structures. It is not source code compatible with any
existing languages, and can therefore be more internally self-consistent. At the
same time, Dylan’s syntax and object-model allow a high-level of integration
with libraries written in other languages such as C and C++.

Dylan avoids providing multiple ways of doing the same thing. Quite the
opposite, the language often uses a single construct to achieve several ends.
For example, Dylan’s type declarations improve the efficiency and readability
of programs, they ensure type safety, and they provide the basis of
polymorphic dispatch, the basic mechanism of object-oriented flow of control.

And while simplicity of language is very important, it should not and need not
come at the price of expressiveness. Multi-method dispatch is an example of a
Dylan feature that makes the language more powerful and simultaneously
makes Dylan programs easier to understand.

Dylan demonstrates that a programming language can be highly expressive,
can encourage the use of appropriate abstraction, can make programming more
productive, and can make the programming process enjoyable, all without
sacrificing the ability to compile into code that is very close to the machine, and
therefore very efficient.

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Introduction

4

Language Overview

Language Overview 1

Dylan is written in a very regular syntax. In addition to making the language
easier to read and write, the layered composition of the syntax supports a
macro system that is language-aware. The macro system does not simply
perform text substitution, but rather performs syntax fragment substitution.
This allows the extension of the language within bounds that are safe,
semantically well-defined, and in accord with the ‘syntactic flavor’ of the
language.

Bindings (Dylan’s analog to variables) are lexically scoped and fully resolved at
compile time. Binding names are not retained in running programs. The
module system allows bindings to be private or shared. Names can be changed
upon import to a module, so the possibility of irreconcilable name conflicts
among separately developed modules is eliminated. Modules can provide
multiple interfaces to the same code base, decreasing the chance of exposing a
client to inappropriate interfaces.

Flow of control is supported through polymorphic function calls, a variety of
conditional and iteration constructs, and a non-local transfer mechanism (with
protected regions).

All objects are first class, including numbers, classes and functions. This means
that all objects can be used as arguments to functions, returned as values,
stored in data structures, and are subject to introspection. All objects are typed,
and type-safety is guaranteed, either through compile-time or runtime type
checking. There are no facilities for deallocating objects. Objects are deallocated
automatically when they can no longer be reached by a program.

Types are used to categorize and specify the behavior of objects. An object may
be an instance of any number of types. Classes are a particular kind of type
used to define the structure and inheritance of instances. Every Dylan object is
a direct instance of exactly one class, and a general instance of that class and
each of its superclasses. The root of the class hierarchy (and of the type
hierarchy) is a class called

<object>

.

Values associated with an instance are stored in slots of the instance.

Classes do not define scopes for names. Names are scoped by modules and
local binding declarations.

C H A P T E R 1

Introduction

Language Overview

5

Functions are the active portions of Dylan programs. Functions accept zero or
more arguments and return zero or more values. Functions are specialized to
accept arguments of particular types, and will signal an error if they are called
with arguments that are not instances of those types. The return values of
functions are similarly type-checked.

A method is a basic unit of callable code. When a method is called, it creates
local bindings for its arguments and executes a body in the resulting
environment. A method can be called directly by a program or indirectly
through a generic function that contains it.

A generic function contains a number of methods. When a generic function is
called, it finds the methods which are applicable to the arguments, and passes
control to the most specific of those methods.

Slots are accessed through functions. This ensures that instances present an
abstract interface to their clients, which assists both in polymorphism and in
program redesign.

Sealing declarations allow the programmer to declare portions of the class
hierarchy and set of functions to be invariant. This supports the enforcement of
protocols, compile-time resolution of polymorphic behavior, and efficient inline
slot access. Portions of a program which are not sealed can be extended at run
time or by additional libraries.

Dylan includes a number of predefined libraries, including an exception
system, collections, arithmetic, higher-order functions, and introspection.

The exception system is object-based. It uses calling semantics (thereby
allowing recovery) but also provides exiting handlers.

The collection system includes a number of predefined collection classes and
operations built on a simple iteration protocol. Additional classes defined in
terms of this protocol have access to the full suite of collection operations.

Arithmetic is fully object-based and extensible.

A library of higher-order operations on functions supports function
composition.

A library of introspective functions supports the run time examination of
objects, including classes and functions.

C H A P T E R 1

Introduction

6

Manual Notation

Manual Notation 1

This manual uses a small number of typographic conventions:

■

Monospaced font

 (courier 12) is used to indicate text which should
appear verbatim in programs.

■

Italic

font

 is used to name parameters, placeholders for actual program text.

■

References to entries in the BNF are given the same name as in the BNF, and
are followed by a subscripted italic

bnf

.

■

Bold

 is used for the first use of terms.

■

Bold

 is also used for meta-syntactic punctuation, as follows:

n

[]

Contents are optional

n

{ }

 Contents appear once

n

{ }*

 Contents appear zero or more times

n

{ }+

Contents appear one or more times

n

|

A choice between the item on the left of the vertical bar and the item on
the right of the vertical bar, but not both.

If a comma appears between a right curly brace and the following asterisk or
plus-sign, it indicates that multiple occurances of the contents are separated by
a comma. There is no comma after the last occurance.

If a semicolon appears between a right curly brace and the following asterisk or
plus-sign, it indicates that multiple occurances of the contents are separated by
a semicolon. A semicolon following the last occurance is optional.

Sample Dylan code is shown in

small monospaced font

. When the return
value of an expression is shown, it is preceded by an

⇒

.

Chapter 10, “Macros,” and Appendix A, “BNF,” each use a distinctive
notation, described at the start of the chapter and appendix.

C H A P T E R 2

Contents

7

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Syntax

Overview 9
Libraries and Modules 9
Bindings 10
Macros 10
Bodies 11
Definitions 11
Local Declarations 12
Expressions 13
Statements 15
Parameter Lists 16
Lexical Syntax 16
Special Treatment of Names 19

Escaping Names 19
Function Call Shorthand 20

Top-Level Definitions 20
Dylan Interchange Format 21
Naming Conventions 22

This document was created with FrameMaker 4.0.4

C H A P T E R 2

8

Contents

C H A P T E R 2

Overview

9

Syntax 2

Overview 2

This chapter describes the syntax and structure of a Dylan program, from the
outside in. This is one of the two defining characteristics of Dylan. The other is
the set of objects on which a Dylan program operates; objects and their types
are discussed in the following chapters. This section is only an overview;
language constructs briefly mentioned here are explained in detail in later
sections. A formal specification of Dylan syntax appears in Appendix A,
“BNF.”

Libraries and Modules 2

A complete Dylan

program

 consists of one or more

libraries

. Some of these
libraries are written by the programmer, others are supplied by other
programmers or by the Dylan implementation. A library is Dylan's unit of
separate compilation and optimization. The libraries that compose a program
can be linked together as early as during compilation or as late as while the
program is running. Program structure inside of a library is static and does not
change after compilation. However, many Dylan implementations provide an
incremental compilation feature which allows a library under development to
be modified, while the program is running, by modifying and recompiling
portions of the library.

A library contains one or more

modules

. A module is Dylan's unit of global
name scoping, and thus of modularity and information hiding. A module can
be exported from its library; otherwise it is internal to that library. A library
can import modules from other libraries. Only an exported module can be
imported.

A module contains zero or more source records and a set of bindings.

A

source record

 is an implementation-defined unit of source program text. For
example, in a file-based development environment each source file would be
one source record. As another example, in an interactive Dylan interpreter
each executable unit of programmer input would be a source record. The

This document was created with FrameMaker 4.0.4

C H A P T E R 2

Syntax

10

Bindings

source program text in a source record is a body, a grammatical element used in
several places in Dylan.

Bindings 2

A

binding

 is an association of a name with a value. The bindings in a module
persist for the life of the program execution. The scope of such a binding is its
module. That is, the binding is visible to all source-records in the module. A
module can export bindings and can import bindings from other modules.
Only an exported binding can be imported. A binding is visible to all
source-records in a module that imports it.

A binding may be

specialized

. This restricts the types of values that may be
held in the binding. An error will be signaled on any attempt to initialize or
assign the binding to a value that is not of the correct type.

A binding is either

constant

 or

variable

. A constant (or read-only) binding
always has the same value. In contrast, a variable (or writable) binding can
have its value changed, using the assignment operator

:=

. Most bindings in a
typical Dylan module are constant.

Macros 2

A

macro

 is an extension to the core language that can be defined by the
programmer, by the implementation, or as part of the Dylan language
specification. Much of the grammatical structure of Dylan is built with
macros. A macro defines the meaning of one construct in terms of another
construct. The original construct is the call to the macro. The replacement
construct is the expansion of the macro. The compiler processes the expansion
in place of the call.

Portions of the call to a macro are substituted into part of the macro definition
to create the expansion. This substitution preserves the meanings of names. In
other words, each name inserted into the expansion from the macro call refers
to the same binding that it referred to in the call, and each name inserted into
the expansion from the macro definition refers to the same binding that it
referred to in the definition.

C H A P T E R 2

Syntax

Bodies

11

A macro is named by a binding and thus is available for use wherever that
binding is visible. There are three kinds of macros: defining macros, which
extend the available set of definitions; statement macros, which extend the
available set of statements; and function macros, which look syntactically like
function calls but have more flexible semantics.

Bodies 2

A

body

 is a sequence of zero or more constituents. When multiple constituents
are present, they are separated by semicolons. When at least one constituent is
present, the last constituent can optionally be followed by a semicolon; this
allows programmers to regard the semicolon as either a terminator or a
separator, according to their preferred programming style.

A

constituent

 is either a definition, a local declaration, or an expression.
Definitions and local declarations form the structure of a program and do not
return values. In contrast, expressions are executed for the values they return
and/or the side-effects that they perform.

Definitions 2

A

definition

 is either a call to a user-defined defining macro, a call to a built-in
defining macro, or a special definition. Typically, a definition defines a binding
in the module containing the definition. Some definitions define more than one
binding, and some do not define any bindings.

A

user-defined defining macro

 is a macro that defines a definition in terms of
other constructs. A call to a user-defined defining macro always begins with
the word

define

 and includes the name of the defining macro. This name
when suffixed by “

-definer

” is the name of a visible binding whose value is
the defining macro. The rest of the syntax of a call to a user-defined defining
macro is determined by the particular macro. Some definitions include a body.
Advanced programmers often define new defining macros as part of
structuring a program in a readable and modular way.

A

built-in defining macro

 is like a user-defined defining macro but is specified
as part of the Dylan language. There are eight built-in defining macros:

C H A P T E R 2

Syntax

12

Local Declarations

define class

,

define constant

,

define generic

,

define inert

,

define library

,

define method

,

define module

, and

define
variable

.

A

special definition

 is a definition construct that is built into the grammar of
Dylan. There is only one special definition:

define macro

.

An implementation can add new kinds of definitions as language extensions.
Such definitions may be implemented as special definitions. However, they
will more commonly take the form of user-defined definition macros that are
the values of bindings exported by implementation-defined modules.

Local Declarations 2

A

local declaration

 is a construct that establishes local bindings or condition
handlers whose scope is the remainder of the body following the local
declaration.

Unlike module bindings, local bindings are established during program
execution, each time the local declaration is executed. They persist for as long
as code in their scope is active. Local bindings persist after the body containing
them returns if they are referenced by a method created inside the body and a
reference to the method escapes from the body, so that it could be called after
the body returns. Unlike module bindings, local bindings are always variable.
However, since a local binding has a limited scope, if there is no assignment
within that scope, the local binding is effectively constant.

A local binding shadows any module binding with the same name and any
surrounding local binding with the same name. The innermost binding is the
one referenced.

The name of a local binding cannot be the name of a macro.

There are three kinds of local declaration: local value bindings (

let

), local
method bindings (

local

), and condition handler establishment (

let
handler

).

The

local value bindings

 construct,

let

, executes an expression and locally
binds names to the values returned by that expression.

C H A P T E R 2

Syntax

Expressions

13

The

local method bindings

 construct,

local

, locally binds names to bare
methods. These bindings are visible in the remainder of the body and also
inside the methods, permitting recursion.

The

condition handler establishing

 construct,

let handler

, establishes a
function to be called if a condition of a given type is signaled during the
execution of the remainder of the body or anything the body calls. The handler
is disestablished as soon as the body returns. Unlike the other two kinds of
local declaration,

let handler

 does not establish any bindings.

Expressions 2

An

expression

 is a construct that is executed for the values it returns and/or
the side-effects that it performs. The “active” portions of a Dylan program are
expressions. An expression is either a literal constant, a named value reference,
a function call, a unary operator call, a binary operator call, an element
reference, a slot reference, a parenthesized expression, or a statement.

An

operand

 is a restricted expression: it cannot be a unary or binary operator
call nor a symbol literal. The other seven forms of expression are allowed.
Operands appear in situations in the grammar where an expression is desirable
but the full generality of expressions would make the grammar ambiguous.

A

literal constant

 directly represents an object. Literal constants are available
for numbers, characters, strings, symbols, boolean values, pairs, lists, and
vectors. For example:

number

123, 1.5, -4.0, #x1f4e

character

'a', '\n'

string

"foo", "line 1\nline 2"

symbol

test:, #"red"

boolean value

#t, #f

pair

#(1 . "one")

list

#(1, 2, 3)

vector

#[1, 2, 3]

C H A P T E R 2

Syntax

14

Expressions

Literal constants are immutable. Attempting to modify an immutable object
has undefined consequences. Immutable objects may share structure. Literal
constants that are equal may or may not be identical.

A symbol can be indicated in two ways: as a keyword (for example,

test:

) or
as a unique string (for example,

#"red"

). The difference is purely syntactic;
the choice is provided to promote program readability.

A string literal can be broken across lines by writing two string literals in a row,
separated only by whitespace; they are automatically concatenated (without a
newline character).

A

named value reference

 returns the value of a visible binding given its name.
For example,

foo

. The referenced binding can be a module binding (either
constant or variable) or a local binding established by a local declaration or by
a parameter list. The value of the binding must not be a macro.

A

reserved word

 is a syntactic token that has the form of a name but is
reserved by the Dylan language and so cannot be given a binding and cannot
be used as a named value reference. There are seven reserved words in Dylan:

define

,

end

,

handler

,

let

,

local

,

macro

, and

otherwise

.

A

function call

 applies a function to arguments, and returns whatever values
the function returns. The function is indicated by an operand and can be a
generic function, a method, or a function macro. The arguments are indicated
by expressions separated by commas and enclosed in parentheses. For
example,

f(x, y)

. For readability, the comma can be omitted between the
two arguments in a keyword/value pair, for example

element(c, k,
default: d)

 is a function call with four arguments.

A

unary operator call

 consists of an operand preceded by one of the two unary
operators - (arithmetic negation) or ~ (logical negation). For example, - x.
This is actually an abbreviated notation for a function call.

A binary operator call consists of two expressions separated by one of the
binary operators + (addition), - (subtraction), * (multiplication), / (division), ^
(exponentiation), = (equality), == (identity), < (less than), > (greater than), <=
(less than or equal), >= (greater than or equal), ~= (not equal), ~== (not
identical), & (logical and), | (logical or), or := (assignment). When binary
operator calls are chained together, they are grouped by rules of precedence
and associativity and by parentheses. For example, (a - b) * x + c * x
^ 2. Except for the last three operators, a binary operator call is actually an
abbreviated notation for a function call. The last three operators (&, |, and :=)
are treated specially be the compiler.

C H A P T E R 2

Syntax

Statements 15

An element reference consists of an operand that indicates a collection and an
expression in square brackets that indicates a key. Instead of a key, there can
be multiple expressions separated by commas that indicate array indices. For
example, c[k] or a[i, j]. This is actually an abbreviated notation for a
function call.

A slot reference is another abbreviated notation for a function call. It consists
of an operand that indicates an object, a period, and a named value reference
that indicates a one-argument function to apply to the object. Typically the
function is a slot getter but this is not required. For example,
airplane.wingspan.

A parenthesized expression is any expression inside parentheses. The
parentheses have no significance except to group the arguments of an operator
or to turn a general expression into an operand. For example, (a + b) * c.

Statements 2

A statement is a call to a statement macro. It begins with the name of a visible
binding whose value is a statement macro. The statement ends with the word
end optionally followed by the same name that began the statement. In
between is a program fragment whose syntax is determined by the macro
definition. Typically this fragment includes an optional body. For example,
if (ship.ready?) embark(passenger, ship) end if.

A statement macro can be built-in or user-defined.

A user-defined statement macro is a macro that defines how to implement a
statement in terms of other constructs. Advanced programmers often define
new statement macros as part of structuring a program in a readable and
modular way.

A built-in statement macro is like a user-defined statement macro but is
specified as part of the Dylan language. There are nine built-in statement
macros: begin, block, case, for, if, select, unless, until, and while.

An implementation can add new kinds of statements as language extensions.
Such a statement takes the form of a user-defined statement macro that is the
value of a binding exported by an implementation-defined module.

C H A P T E R 2

Syntax

16 Parameter Lists

Parameter Lists 2

Several Dylan constructs contain a parameter list, which describes the
arguments expected by a function and the values returned by that function.
The description includes names, types, keyword arguments, fixed or variable
number of arguments, and fixed or variable number of values. The argument
names specified are locally bound to the values of the arguments when the
function is called. The value names specified are only for documentation.

The syntactic details of parameter lists are described in “Methods” on page 412.

Lexical Syntax 2

Dylan source code is a sequence of tokens. Whitespace is required between
tokens if the tokens would otherwise blend together. Whitespace is optional
between self-delimiting tokens. Alphabetic case is not significant except within
character and string literals.

Whitespace can be a space character, a tab character, a newline character, or a
comment. Implementations can define additional whitespace characters.

A comment can be single-line or delimited. Although comments count as
whitespace, the beginning of a comment can blend with a preceding token, so
in general comments should be surrounded by genuine whitespace.

A single-line comment consists of two slash characters in a row, followed by
any number of characters up to and including the first newline character or the
end of the source record. For example, // This line is a kludge!.

A delimited comment consists of a slash character immediately followed by a
star character, any number of characters including balanced slash-star /
star-slash pairs, and finally a star character immediately followed by a slash
character. For example, /* set x to 3 */.

A single-line comment may appear within a delimited comment; occurances of
slash-star or star-slash within the single line comment are ignored.

C H A P T E R 2

Syntax

Lexical Syntax 17

A token is a name, a #-word, an operator, a number, a character literal, a string
literal, a symbol literal, or punctuation.

A name is one of the following four possibilities:

■ An alphabetic character followed by zero or more name characters.

■ A numeric character followed by two or more name characters including at
least two alphabetic characters in a row.

■ A graphic character followed by one or more name characters including at
least one alphabetic character.

■ A “\” (backslash) followed by a function operator.

An alphabetic character is any of the 26 letters of the Roman alphabet in upper
and lower case.

A numeric character is any of the 10 digits.

A graphic character is one of the following:

! & * < = > | ^ $ % @ _

A name character is an alphabetic character, a numeric character, a graphic
character, or one of the following:

- + ~ ? /

The rich set of name characters means that name and operator tokens can
blend. Thus Dylan programs usually set off operators with whitespace.

Implementations can add additional characters but programs using them will
not be portable.

A #-word is one of #t, #f, #next, #rest, #key, or #all-keys. The first two
are literal constants, the others are used in parameter lists. Implementations
can add additional implementation-defined #-words, but programmers cannot
add their own #-words.

C H A P T E R 2

Syntax

18 Lexical Syntax

An operator is one of the following:

+ addition
- subtraction and negation
* multiplication
/ division
^ exponentiation
= equality
== identity
< less than
> greater than
<= less than or equal
>= greater than or equal
~= not equal
~== not identical
& logical and
| logical or
:= assignment
~ logical negation

Programmers cannot add their own operators.

A number is a decimal integer with an optional leading sign, a binary integer,
an octal integer, a hexadecimal integer, a ratio of two decimal integers with an
optional leading sign, or a floating-point number. The complete syntax of
numbers is given in “Numbers” on page 406.

A character literal is a printing character (including space, but not ' nor \) or a
backslash escape sequence enclosed in a pair of single-quote characters '.

A string literal is a sequence of printing characters (including space, but not "
nor \) and backslash escape sequences enclosed in a pair of double-quote
characters ".

The backslash escape sequences used in character and string literals allow
“quoting” of the special characters ', ", and \, provide names for “control”
characters such as newline, and allow Unicode characters to be specified by
their hexadecimal codes.

A symbol literal is a keyword or a unique string. A keyword is a name
followed immediately by a colon character “:”. A unique string is a sharp sign
“#” followed immediately by a string literal.

C H A P T E R 2

Syntax

Special Treatment of Names 19

Punctuation is one of the following:

() parentheses
[] square brackets
{, } curly brackets
, comma
. period
; semicolon
= defaulting/initialization
:: type specialization
== singleton specialization
=> arrow
#(list/pair literal
#[vector literal
?, ?? macro pattern variables
... macro ellipsis

Note that some tokens are both punctuation and operators. This ambiguity is
resolved by grammatical context.

Note that some punctuation tokens (for example period and equal sign) are
capable of blending into some other tokens. Where this can occur, whitespace
must be inserted to delimit the token boundary.

Special Treatment of Names 2

Escaping Names 2

The escape character (\) followed by any name or operator-name has the
same meaning as that name or operator-name, except that it is stripped of
special syntactic properties. If it would otherwise be a reserved word or
operator, it is not recognized as such.

For example, \if and if are names for the same binding, but \if is treated
syntactically as a named value reference, while if is the beginning of a
statement. Similarly, \+ and + refer to the same binding, but the former is
treated syntactically as a named value reference, and the latter as an operator.

C H A P T E R 2

Syntax

20 Top-Level Definitions

For reserved words, this allows the names of statement macros to be exported
and imported from modules. It does not allow them to be used as the names of
local bindings, nor does it allow them to be executed. (That is, they cannot be
used as bindings to runtime values.)

For operators, it allows the operator to be used where a named value reference
is required, for example as the name in a method definition, as an argument to
a function, or in a define module export clause. This feature can only be
used for operators which provide a shorthand for a function call. It cannot be
used for special operators.

Function Call Shorthand 2

Dylan provides convenient syntax for calling a number of functions. These
include the operators which are not special operators, the array reference
syntax, and the singleton syntax.

In all cases, the syntax is equivalent to using the name of the function in the
current environment. The syntax does not automatically refer to a binding in
the Dylan module.

Top-Level Definitions 2

Dylan's built-in defining macros can only be used at top level. When the
expansion of a user-defined macro includes a call to a built-in defining macro,
the user-defined macro also can only be used at top level.

A constituent is at top level if and only if it is a direct constituent of a body, no
preceding constituent of that body is a local declaration, and the body is either
the body of a source record or the body of a begin statement that is itself a
constituent at top level. When a constituent appears inside a call to a macro,
whether that constituent is at top level must be determined after macro
expansion.

The effect of the above rule is that a constituent at top level is not in the scope
of any local declarations, is not subject to any condition handlers other than
default handlers, and is not affected by any flow of control constructs such as
conditionals and iterations. This restriction enhances the static nature of
definitions.

C H A P T E R 2

Syntax

Dylan Interchange Format 21

Dylan Interchange Format 2

The Dylan interchange format is a standard file format for publishing Dylan
source code. Such a file has two parts, the file header and the code body. The
file header comes before the code body.

The code body consists of a source record.

The file header consists of one or more keyword-value pairs, as follows:

■ A keyword is a letter, followed by zero or more letters, digits, and hyphens,
followed by a colon, contains only characters from the ISO 646 7-bit
character set, and is case-independent.

■ A keyword begins on a new line, and cannot be preceded by whitespace.

■ All text (excluding whitespace) between the keyword and the next newline
is considered to be the value. Additional lines can be added by having the
additional lines start with whitespace. Leading whitespace is ignored on all
lines.

■ The meaning of the value is determined by the keyword.

■ Implementations must recognize and handle standardized keywords
properly, unless the specification for a keyword explicitly states that it can be
ignored.

■ When importing a file, implementations are free to ignore any non-standard
keyword-value pairs that they do not recognize.

■ When exporting a file, implementations must use standard keywords
properly. Implementations are free to use non-standard keywords.

■ The definition of a keyword may specify that the keyword may occur more
than once in a single file header. If it does not, then it is an error for the
keyword to occur more than once. If it does, it should specify the meaning
of multiple occurances.

The file header cannot contain comments, or other Dylan source code.

Blank lines may not appear in the file header. A blank line defines the end of
the file header and the beginning of the code body. The blank line is not part of

C H A P T E R 2

Syntax

22 Naming Conventions

the code body. (A "blank line" is a line consisting of zero or more space or tab
characters, ending in a newline character.)

The following standard keywords are defined:

language: language-name [Header keyword] 2

The source record in the file is written in the named language. The only
portable value for this keyword is infix-dylan.

module: module-name [Header keyword] 2

The source record in the file is associated with the named module. This
keyword is required.

author: text [Header keyword]
copyright: text [Header keyword]
version: text [Header keyword] 2

These are provided for standardization. They are optional, and can be ignored
by the implementation.

A typical Dylan source file might look like this:

module: quickdraw

author: J. Random Rect

 Linear Wheels, Inc., "Where quality is a slogan!"

 rect@linear.com

copyright: (c) 1995 Linear Wheels, Inc., All rights reserved

version: 1.3 alpha (not fully tested)

define constant $black-color = ...

Naming Conventions 2

Several conventions for naming module bindings help programmers identify
the purposes of bindings. In general, the names of bindings do not affect the

C H A P T E R 2

Syntax

Naming Conventions 23

semantics of a program, but are simply used to improve readability. (The
exceptions to this rule are the “-definer” suffix used by definition macros,
and the “-setter” suffix, described below.)

■ Module bindings used to hold types begin and end with angle brackets.

<window>

<object>

<character>

<number>

<stream>

<list>

■ Variable module bindings begin and end with asterisks.

parse-level

incremental-search-string

machine-state

window-count

■ Program constants begin with a dollar sign.

$pi

$end-of-file

■ The names of most predicate functions end with a question mark.
Predicates are functions which return a true or false value.

subclass?

even?

instance?

■ Operations that return a value similar to one of their arguments and which
also destructively modify the argument end in a !. (It will often also be the
case that destructive and non-destructive variations of the function exist.) !
isn't a universal warning that an operation is destructive. Destructive
functions that return other values (like -setter functions and pop) don't
need to use the ! convention.

reverse!

sort!

C H A P T E R 2

Syntax

24 Naming Conventions

■ Operations that retrieve a value from a location are called getters.
Operations that store into a location are called setters. In general, getters
and setters come in pairs. Setter binding names are derived by appending
“-setter” to the corresponding getter binding name. This convention is
used to generate setter names automatically, and it is used by :=, the
assignment operator, to find the setter that corresponds to a given getter.

element element-setter

size size-setter

color color-setter

C H A P T E R 3

Contents

25

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Program Structure

Modules 27
Defining Module Bindings 27

Libraries 28

This document was created with FrameMaker 4.0.4

C H A P T E R 3

26

Contents

C H A P T E R 3

Modules

27

Program Structure 3

Modules 3

Modules are used for creating large-scale namespaces of bindings. The
bindings accessible in a module are visible to all the code within the module
(except where shadowed by a local binding). Only the bindings explicitly
exported are visible from outside the module.

Some languages have module systems with distinct support for exporting
variables, functions, types, and classes. Dylan modules operate only on
bindings. Because functions and classes are commonly named by bindings,
access to them is controlled by controlling access to the bindings that name
them. By exporting the binding naming a class or function, a program has
effectively exported the class or function. If the binding is not exported, then
the class or function is effectively private.

*

A module definition defines the imports and exports of a module, and may
specify bindings owned by the module. A complete description of module
definitions is given on page 369.

Defining Module Bindings 3

A module consists of a set of bindings. A binding may be

owned

 by a module,
or a module may

import

 the binding from another module by

using

 the other
module. Modules

export

 bindings to make them accessible to other modules.
Only exported bindings can be imported by other modules.

Within a given module, a name refers to at most one module binding. It is an
error to create or import two or more different bindings with the same name in
a single module. If a name does refer to a binding, the binding is said to be

accessible

 from the module. Each binding is owned by exactly one module, but
it can be accessible from many modules.

Module bindings are created by definitions.

Explicit definitions

 are created by

define constant

,

define variable

,

define generic

,

define macro

and the class name in

define class

.

Implicit definitions

 are created by

define method

and the slot specifications of

define class

.

*

This privacy can sometimes be circumvented through certain introspective operations.

This document was created with FrameMaker 4.0.4

C H A P T E R 3

Program Structure

28

Libraries

Within a library, a module binding may have no explicit definition or it may
have one explicit definition. It may not have more than one explicit definition.
If a module binding has no explicit definition, it must have one or more
implicit definitions. If it does have an explicit definition, it can have zero or
more implicit definitions.

A binding may be declared by the

create

 clause of a module definition. This
does not define the binding, but instead declares that it is owned by the
module. Other modules may import the binding from that module. The
binding must be defined by one of the modules which imports it.

If a binding is not declared by the

create

 clause of a module definition, it is
owned by the module in which its explicit definition appears. If it does not
have an explicit definition, it is owned by one of the modules in which at least
one of its implicit definitions appears; the exact owning module cannot be
determined.

It is an error to reference a name for the purpose of getting or setting its value if
the name does not designate either a local or module binding in the
environment where the reference occurs.

Libraries 3

A library consists of the following parts:

■

A library definition. This specifies a name for the library, a set of modules
which are exported from the library for use by other libraries, and a set of
modules that are imported from other libraries for use by the library being
defined. A complete description of library definitions is given on page 374.

■

The association of source code with the library. The mechanism by which
this association is made is controlled by the programming environment and
is implementation-defined.

■

The association of executable code with the library. The mechanism by
which this association is made is implementation-defined. The mechanism
by which the compiler is invoked to produce the executable code is
implementation-defined.

■

The export information of the library. The format of this information and
the mechanism by which it is associated with the library is

C H A P T E R 3

Program Structure

Libraries

29

implementation-defined. The export information comprises the information
required to process the source code of another library that imports the
library.

The library export information is the only part of a Dylan library that is
needed to allow some other library to import it. A library that exports some
modules does not have any additional declarations providing information to
the compiler when it is processing the code that imports those modules.
Rather, any such information that is needed is obtained in some
implementation-defined way while processing the source code of the
exporting library and is retained in the library export information of the
exporting library.

Exporting a module from a library makes all of the bindings exported by the
module available for import by modules in other libraries.

Importing a module into a library allows the module to be used by modules
defined within the library. This gives the library’s modules access to the
bindings of the module being imported.

Importing a module into a library does not allow source records in the
importing library to be contained in the imported module.

Each implementation must provide a library named

dylan

 which exports a
module named

dylan

. That module must export exactly those bindings
documented as being part of the Dylan language, and the values of those
bindings must be as specified by the Dylan language. The

dylan

 library is
permitted to export additional implementation-defined modules.

Each library contains an implicitly defined module whose name is

dylan-user

. Within this module, all the bindings specified by the Dylan
language are accessible using their specified names. Additional
implementation-dependent bindings may also be accessible from this module.

C H A P T E R 3

Program Structure

30

Libraries

C H A P T E R 4

Contents

31

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Program Control

Overview 33
Function Calls 33

General Syntax 33
Slot Reference 34
Element Reference 35

Operators 35
Assignment 37
Conditional Execution 39

True and False 39
Iteration 40

Iteration Statements 40
Tail Recursion 40

Non-Local Exits and Cleanup Clauses 41
Multiple Values 41
Order of Execution 43

Execution Order Within Expressions 43

This document was created with FrameMaker 4.0.4

C H A P T E R 4

32

Contents

C H A P T E R 4

Overview

33

Program Control 4

Overview 4

Dylan provides a number of program control constructs, implementing
function calls, operators, assignment, conditional execution, iteration, and
non-local flow of control.

This chapter also describes the multiple-value facility and the rules for order of
execution of Dylan programs.

Function Calls 4

General Syntax 4

The general syntax for function calls is

function

(

arg1

,

arg2

,

 …

argn

)

function

 has the syntax of an operand and is the function to be called. The

args

have the syntax of expressions, and are the arguments to the function. The

function

 will often be a named value reference, but it can be any other kind of
operand as well.

In the following example, the function being called is the value of the binding

average

.

average(x, y)

In the following two examples, the function being called is the value of a

method

 statement. The examples differ only in that the second example puts
parentheses around the

method

 statement, to make the code somewhat more
readable.

method(x) x + 1 end (99)

(method(x) x + 1 end) (99)

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Program Control

34

Function Calls

In the following examples, the function being called is the result of another
function call.

key-test

 takes a collection as an argument, and returns a
predicate function. The predicate function is then applied to the two keys. The
following three program fragments will have the same effect.

key-test(collection)(key1, key2)

(key-test(collection))(key1, key2)

begin

 let fun = key-test(collection);

 fun(key1, key2);

end

Slot Reference 4

Dylan provides a shorthand syntax for functions which accept one argument.
The syntax

argument

.

function

 applies

function

 to

argument

. This syntax is
commonly used for slot reference, to access the

function

 slot of

argument

.

Order of execution aside, the following pairs of function calls are equivalent:

america.capital

capital(america)

window.position

position(window)

Slot reference syntax can be cascaded and is left associative. Order of execution
aside, the following pair of expressions are equivalent. Each returns the origin
of the root-view of a window.

window.root-view.origin

origin(root-view(window))

C H A P T E R 4

Program Control

Operators

35

Element Reference 4

Dylan provides a shorthand syntax for element reference. The syntax

sequence

[

i

]

 is equivalent to the function call

element(

sequence

,

i

)

. The
syntax

array

[

i

1

,

i

2

,

 …

i

n

]

 is equivalent to the function call

aref(

array

,

i

1

,

i

2

,

…

i

n

)

.

Order of execution aside, the following pairs of expressions are equivalent:

all-windows[0]

element(*all-windows*, 0)

tic-tac-toe[1, 2]

aref(*tic-tac-toe*, 1, 2)

The names

element

 and

aref

 are looked up in the environment of the
element reference expression.

Operators 4

Dylan provides a small number of unary and binary operators. Three of these
are special operators with explicitly defined syntax and execution rules. The
remainder are syntactic shorthand for function calls.

Operators and their operands must be separated by whitespace or parentheses.
All binary operators are left-associative, except for the assignment operator,

:=

,
which is right-associative.

Each operator that is syntactic shorthand for function call corresponds to a
binding name, given in the table below. When an operator is called, the
corresponding name is looked up in the environment of the call. (It is not
looked up in the Dylan module, and will only refer to a binding in the Dylan
module if that binding has been imported in the current module and has not
been shadowed by a lexical binding.)

If the name given in the table has the same spelling as the operator, it must be
escaped with \ to be used as a named value reference. For example, to add a
method to

+

 with

define method

, you use

\+

. To use

<

 as an argument to

sort

, you write

\<

.

C H A P T E R 4

Program Control

36

Operators

Special operators do not correspond to any binding name, and cannot be used
with any alternate syntax.

With the exception of calls to the three special operators (&, |, and :=), the
operands of a binary operator call are executed in left to right order. Special
operators have their own flow of control rules, described in “Special
Operators” on page 397.

The operators are listed below in descending order of precedence. Operators
within a group share the same precedence. When a function call using slot
reference syntax reference appears as an operands, it has greater precedence
than any of the binary operators.

Table 4-1

Operators

Operator Unary/Binary Description Name

-

unary arithmetic negation

negative

~

unary logical negation

~

^

binary exponentiation

^

*

binary multiplication

*

/

binary division

/

C H A P T E R 4

Program Control

Assignment

37

Assignment 4

The special operator

:=

is used to set variables to new values and as an
alternate syntax for calling setter functions and macros.

The assignment operator is described in detail on page 397.

The following examples show the use of

:=

 to change the value of a module
binding.

+

binary addition

+

-

binary subtraction

-

=

binary equality

=

== binary identity ==

~= binary non-equality ~=

~== binary non-identity ~==

< binary less than <

> binary greater than >

<= binary less than or equals <=

>= binary greater than or equals >=

& binary logical and {none}

| binary logical or {none}

:= binary assignment {none}

Table 4-1 Operators

Operator Unary/Binary Description Name

C H A P T E R 4

Program Control

38 Assignment

define variable *foo* = 10;

foo

 ⇒ 10

foo := *foo* + 100;

 ⇒ 110

foo

 ⇒ 110

The following examples show the use of := as shorthand for calling a setter
function. In general, using this syntax to call a function fun is equivalent to
calling the function fun-setter.

define variable *foo* = vector (10, 6, 8, 5);

element(*foo*, 2)

 ⇒ 8

element(*foo*, 2) := "bar"

 ⇒ "bar"

foo

 ⇒ #[10, 6, "bar", 5]

The following examples show the use of := as shorthand for calling a setter
function using slot access notation.

window.position := point(100, 100)

vector.size := 50

The following examples show the use of := as shorthand for calling
element-setter or aref-setter.

my-vector[2] := #”two”

my-array[1,1] := #”top-left”

C H A P T E R 4

Program Control

Conditional Execution 39

Conditional Execution 4

There are a number of statements and special operators that can be used to
conditionally execute code. These are described in detail in Chapter 14, “The
Built-In Macros and Special Operators.”

True and False 4

For the purposes of conditional execution, there is a single object that counts as
false, and all other objects count as true.

Table 4-2 Conditional Execution

Macro Description Page

if Executes an implicit body if the value of a
test is true or an alternate if the test is
false.

383

unless Executes an implicit body unless the
value of a test is true.

385

case Executes a number of tests until one is
true, and then executes an implicit body
associated with the true test.

385

select Compares a target object to a series of
potential matches, and executes an
implicit body associated with the first
match found.

386

| Returns the value of the first of two
operands which is true.Returns the value
of the first of two operands which is true.
This is a logical or operation.

399

& Executes a second operand and returns its
values if the value of the first operand is
true. This is a logical and operation.

400

C H A P T E R 4

Program Control

40 Iteration

The false object is the constant #f. There is a canonical true object, #t, which
can be used for clarity of code. #t and #f are instances of the class
<boolean>.

Because all values besides #f count as true, the term “true or false” is not
equivalent to “#t or #f”.

The special operator ~ is used for logical negation. If its operand is true, it
returns #f. If its operand is #f, it returns #t.

Iteration 4

Iteration is supported through a number of statements, as well as through
recursive functions.

Iteration Statements 4

The statemens supporting iteration are described in detail in Chapter 14, “The
Built-In Macros and Special Operators.”

Tail Recursion 4

Implementations are encouraged to optimize tail recursive function calls
whenever possible. Tail recursion occurs when a function F1 returns the values

Table 4-3 Iteration Statements

Macro Description Page

while Repeatedly executes a body until a test
expression is false.

388

until Repeatedly executes a body until a test
expression is true.

388

for Performs general iteration over a body,
updating bindings and performing end
tests on each iteration.

389

C H A P T E R 4

Program Control

Non-Local Exits and Cleanup Clauses 41

of a call to another function F2. In many cases, this can be used to create loops
using self-recursive or mutually-recursive functions. (Among the cases which
cannot be optimized are those in which the return value types of F1 and F2
differ, requiring the F1 to check the types of the values before returning them.)

The following example uses tail recursion to compute the name of the root
volume on which a given file system object is stored.

define method root-volume-name (f :: <file-or-directory>)

 if (root-volume?(f))

 f.name

 else

 root-volume-name(f.container)

 end if;

end method;

The example above can execute with constant stack size, regardless of how
deeply nested the file system hierarchy may be.

Non-Local Exits and Cleanup Clauses 4

Non-local exits allow the direct transfer of control to a previous point in
program execution. The normal chain of function returns is aborted.

Cleanup clauses are bodies which are guaranteed to execute, even if the
program segment of which they are a part is aborted by a non-local exit.

Non-local exits and cleanup clauses are implemented by the block statement.
A complete description of the block statement is given on page 392.

Multiple Values 4

The execution of an expression can yield one value, more than one value, or no
values at all. This capability is called multiple values.

C H A P T E R 4

Program Control

42 Multiple Values

Multiple values are generated by the function values. They are received by
the bindings of let declarations and define constant and define
variable definitions.

Many statements will return multiple values if the last expression they execute
returns multiple values. Similarly, a function will return all the values of the
last subexpression it executes.

define method return-three-values (a, b, c)
 values(a, b, c)
end method return-three-values;

begin
 let (foo, bar, baz) = return-three-values (1, 2, 3);
 list (foo, bar, baz)
end
 => #(1, 2, 3)

Each expression in the argument list of a function call supplies only one
argument to the function call. That argument is the first value returned by the
expression. Additional values returned by the expressions are ignored.

list (return-three-values(1, 2, 3),

 return-three-values(1, 2, 3),

 return-three-values(1, 2, 3))

 ⇒ #(1, 1, 1)

Multiple values can be used to perform parallel binding:

begin

 let x = 10;

 let y = 20;

 let (x, y) = values (y, x);

 list (x, y);

end

 ⇒ #(20, 10)

The following rules apply when matching up an expression which returns
multiple values with a binding declaration or definition that receives multiple
values.

■ If there are the same number of bindings and values, the bindings are
initialized to the corresponding values.

C H A P T E R 4

Program Control

Order of Execution 43

■ If there are more bindings than there are values, the extra bindings are
initialized to #f. (If a binding is typed, #f must be an instance of its type or
an error is signaled.)

■ If there are more values returned than there are bindings, the excess values
are placed in a sequence which is used as the initial value for rest-binding or
discarded there is no rest-binding.

begin

 let (one #rest nums) = return-three-values(1, 2, 3);

 nums;

end

 ⇒ #(2, 3)

■ If there is a rest-binding but there are no excess values, rest-binding is
initialized to an empty sequence.

Order of Execution 4

Order of execution is defined for the constituents within a body. With some
exceptions noted below, this execution order is left-to-right.

Definitions form the overall structure of a program and are not said to execute.
In particular, module bindings are not created in any order, but all exist when
program execution commences. To the extent that these bindings must be
initialized by the values of some expressions which cannot be analyzed at
compile time, references to the bindings are constrained by the execution order
of the expressions within the surrounding body.

Dylan implementations are encouraged to allow forward references to module
bindings whenever possible.

The order of execution of the components of a call to a user-defined macro is
determined by the macro.

Execution Order Within Expressions 4

In general, execution within an expression proceeds left-to-right. The chief
exception to this rule is the assignment operator, which is executed right-to-left.

C H A P T E R 4

Program Control

44 Order of Execution

■ In a standard function call, the function operand is executed first, followed
by the argument expressions. (Remember, the function need not be a named
value reference, but can be a more complex operand). After the function
operand has been executed and each of the argument expressions has been
executed, the function is applied to the arguments.

one(two, three, four)

■ In slot references, the object operand is executed first, followed by the
function named value reference. Then the function is applied to the object.

one.two

■ In element references, the collection operand is executed first, followed by
the key expressions in order. Then the element access is performed. The
execution time of the binding element or aref is unspecified.

one[two, three]

■ In an operator call, the operands are executed left-to-right. The execution
time of the binding specified by the operand (e.g. + or *)is unspecified.

one + two - three

■ In an assignment to a place which represents a function call, the order of
execution is largely the same as it would be in a call to the corresponding
setter function. The new-value expression is executed first, followed by the
argument expressions. The execution time of the binding named by the
setter function is undefined.

function-setter(one, two, three)

function(two, three) := one

slot-setter(one, two)

two.slot := one

element-setter(one, two, three)

two[three] := one

aref-setter(one, two, three, four)

two[three, four] := one

C H A P T E R 5

Contents

45

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Types and Classes

Overview 47
The Type Protocol 47

Base Types and Pseudosubtypes 48
Type Disjointness 49

Classes 50
Features of Classes 50
Creating Classes 50
Class Inheritance 51
Computing the Class Precedence List 52

Slots 55
Slot Inheritance 57
Slot Specifications 57

Instance Creation and Initialization 63
Overview 63
Inherited Slot Specifications 66
Initialization Argument Specifications 67

Singletons 70
Union Types 71
Limited Types 72

Limited Type Constructor 72
Limited Integer Types 72
Limited Collection Types 74

This document was created with FrameMaker 4.0.4

C H A P T E R 5

46

Contents

C H A P T E R 5

Overview

47

Types and Classes 5

Overview 5

The Dylan type system is used to categorize all objects. In concert with generic
functions, types determine the behavior of objects. When an object is passed as
an argument to a generic function, the generic function looks at the type of the
object to determine which method should be run.

Dylan supports several kinds of types, including classes, singletons, union
types, and limited types.

■

Classes are used to define the structure, inheritance, and initialization of all
objects. An object can be an instance of any number of types, but will
always be a direct instance of exactly one class.

■

Singletons are used to indicate individual objects.

■

Union types are used to indicate objects which are instances of one of a set of
specified types.

■

Limited types are used to indicate objects which are instances of another
type and have additional constraints. There are several kinds of limited
types.

All types are first-class objects, and are general instances of

<type>

.
Implementations may add additional kinds of types. The language does not
define any way for programmers to define new subclasses of

<type>

.

The Type Protocol 5

The type protocol comprises the following:

■

All types may be used as specializers for method parameters, bindings, and
slots.

■

instance?(

object

,

type

)

 tests type membership.

■

subtype?(

type1

,

type2

)

 tests type inclusion.

■

make(

type

 …)

 makes an instance. This operation is only supported if the
type is instantiable.

This document was created with FrameMaker 4.0.4

C H A P T E R 5

Types and Classes

48

The Type Protocol

■

Type objects are immutable.

■

If two type objects are equivalent and are not classes, it is unspecified
whether they are

==

.

The following is an informal description of type relationships: The function

subtype?

 defines a partial ordering of all types. Type

t

1

 is a subtype of type

t

2

(i.e.

subtype?(

t

1

,

t

2

)

 is true) if it is impossible to encounter an object that is
an instance of

t

1

 but not an instance of

t

2

. It follows that every type is a
subtype of itself. Two types

t

1

 and

t

2

 are said to be

equivalent types

 if

subtype?(

t

1

,

t

2

)

 and

subtype?(

t

2

,

t

1

)

 are both true.

t

1

 is said to be a

proper subtype

 of

t

2

 if

t

1

 is a subtype of

t

2

 and

t

2

 is not a subtype of

t

1

.

subtype?

 on classes is defined by inheritance. A class is a subtype of itself
and of its general superclasses.

subtype?

 on singletons is defined by object type and identity. If

x

 is an object
and

t

 is a type,

subtype?(singleton(

x

),

t

)

 will be true only if

instance?(

x

,

t

)

 is true.

subtype?

 rules for union types are given in “Union Types” on page 71.

subtype?

 rules for limited integer types are given in “Limited Integer Types”
on page 72.

subtype?

 rules for limited collection types are given in “Limited
Collection Types” on page 124.

<object>

 is the root of the type hierarchy. All objects are instances of

<object>

, and all types are subtypes of

<object>

.

A number of operations on types are described in “Reflective Operations on
Types” on page 331.

Base Types and Pseudosubtypes 5

Every type has a

base type

. The base type for a class is the class itself. The
base type of a singleton is the singleton itself. The base type of a union is the
union of the base types of its component types. The base type of a limited type

limited(

C

,

 …

)

 is

C

.

The type

t

1

 is a

pseudosubtype

 of the type

t

2

 if

t

1

 is a subtype of the base type
of

t

2

 and

t

1

 and

t

2

 are not disjoint.

Note that

 t

1

 being a subtype of t2 implies that t1 is a pseudosubtype of t2, but t1
being a pseudosubtype of t2 does not imply that t1 is a subtype of t2. Note also

C H A P T E R 5

Types and Classes

The Type Protocol 49

that if t2 is not a limited type or some other non-standard type, then
pseudosubtype is the same as subtype.

Base types and pseudosubtypes are used in the rules for sealing, described in
Chapter 9, “Sealing.”

Type Disjointness 5

Informally, two types are disjoint if there can be no object that is an instance of
both types. Formally, the disjointness of types is specified by the following set
of rules. (Some of these rules reference definitions given in “Limited Integer
Types” on page 72, “Element Types” on page 122 and “Limited Collection
Types” on page 124.)

■ Two classes are disjoint if they have no common subclasses.

■ A union type is disjoint from another type if both of the union type's
component types are disjoint from that other type.

■ A singleton type is disjoint from another type if the singleton’s object is not
an instance of that other type.

■ A limited collection type is disjoint from a class if their base types are
disjoint, or the class is a subclass of <collection> and its element type is
definite and not equivalent to the limited collection type's element type, or
the class is a subclass of <collection> and its element type is indefinite
and not a supertype of the limited collection type's element type.

■ A limited collection type is disjoint from a limited integer type. (Because the
classes <collection> and <integer> are disjoint.)

■ Two limited collection types are disjoint if their base types are disjoint, or
their element types are not equivalent, or their sizes are not compatible.
Two sizes are compatible if either is #f, or they are = to each other, or one is
a sequence of integers and the other is the product of those integers.

■ Two limited integer types are disjoint if the minimum value of one is greater
than the maximum value for the other.

■ A limited integer type is disjoint from a class if their base types are disjoint
or the class is a subclass of <integer> whose range is disjoint from the
limited integer type’s range.

C H A P T E R 5

Types and Classes

50 Classes

Classes 5

Classes are used to define the inheritance, structure, and initialization of objects.

Every object is a direct instance of exactly one class, and a general instance of
the general superclasses of that class.

A class determines which slots its instances have. Slots are the local storage
available within instances. They are used to store the state of objects.

Classes determine how their instances are initialized by using the initialization
protocol.

Features of Classes 5

There are four features of classes, each of which is independent of the others.

■ A class can be abstract or concrete. If the class is concrete, it can have direct
instances. If it is abstract, it cannot have direct instances, but only indirect
instances.

■ A class can be instantiable or uninstantiable. If the class is instantiable, it
can be used as the first argument to make. If it is uninstantiable, it cannot be
used as the first argument to make.

■ A class can be primary or free. This controls how a class can be used for
multiple inheritance. For a full description of this feature, see “Declaring
Characteristics of Classes” on page 132.

■ A class can be sealed or open. This controls whether a class can be
subclassed outside the library where it is defined. For a full description of
this feature, see “Declaring Characteristics of Classes” on page 132.

Creating Classes 5

New classes may be created by calling make on <class>, or with the
definition define class. In most programs the latter is more commonly
used.

C H A P T E R 5

Types and Classes

Classes 51

When a class is created with make, it is instantiated and returned just like any
other object. The options available when creating a class with make are
described on page 186.

When a class is created with define class it is used to initialize a new
module binding. define class allows the specification of superclasses,
slots, initialization behavior, and options related to sealing. The complete
syntax of define class is given on page 366.

The following simple class definition creates a class named by the module
binding <new>. The class inherits from <object>, and does not specify any
slots.

define class <new> (<object>)

end class <new>;

The following class definition illustrates the creation of a class with multiple
superclasses. Again, there are no slots.

define class <color-window> (<palette>, <window>)

end class <color-window>;

Class Inheritance 5

When a class is created, its direct superclasses are specified. The new class
directly inherits from these classes; it is a direct subclass of each of these
classes. There can be no duplicates in the direct superclasses of a class.

The subclass relationship is transitive. If a class C is a direct subclass of C1, C1
is a direct subclass of C2, and C2 is a direct subclass of C3, then C is an indirect
subclass of C2 and C3. A general subclass is a direct or indirect subclass.

Inheritance cannot be circular. A class cannot be its own general subclass.

A class is a subtype of each of its general superclasses.

Every class is a general subclass of <object>.

C H A P T E R 5

Types and Classes

52 Classes

Computing the Class Precedence List 5

The definition of a class specifies a total ordering on that class and its direct
superclasses. This ordering is called the local precedence order. In the local
precedence order, the class precedes its direct superclasses, and each direct
superclass precedes all other direct superclasses following it in the sequence of
direct superclasses given in the class definition.

The class precedence list for a class C is a total ordering on C and its
superclasses that is consistent with the local precedence orders of each of C and
its superclasses as well as with the ordering in the class precedence list of each
of its superclasses.

Sometimes there are several possible total orderings on C and its superclasses
that are consistent with the local precedence orders for each of C and its
superclasses. Dylan uses a deterministic algorithm to compute the class
precedence list, which chooses one of the possible total orderings.

Sometimes there is no possible total ordering on C and its superclasses that is
consistent with the local precedence orders for each of C and its superclasses.
In this case, the class precedence list cannot be computed, and an error is
signaled.

To compute the class precedence list for class C:

■ Let S be the set of class C and all of its superclasses.

■ Let C1…Cn be the members of S.

■ Let D1…Dm be the direct superclasses of C.

■ Let L be the class precedence list of C.

■ Let CPL1…CPLm be, respectively, the class precedence lists of D1…Dm.

■ A class C1 is said to precede class C2 if C1 must appear before C2 in L.

n Local precedence order constraint
Class C precedes every D in D1…Dm. Every Di in D1…Dm precedes every
Dj, such that i < j.

n Monotonicity constraint
For every class precedence list K in CPL1…CPLm, every class in K
precedes all the classes which occur later in K.

C H A P T E R 5

Types and Classes

Classes 53

■ To compute L, pick a class N in S such that there are no classes in S that
precede N. If there is no such class, the class C is inconsistent and its
creation is not permitted.

■ If there are several classes from S with no predecessors, select the one that
has a direct subclass rightmost in the partial class precedence list computed
so far. (In more precise terms, let {N1,…Nm}, m>=2, be the classes from S
with no predecessors. Let (C1,…,Cn), n>=1, be the partial class precedence
list computed so far. C1 is the most specific class, and Cn is the least specific.
Let 1<=j<=n be the largest number such that there exists an i where 1<=i<=m
and Ni is a direct superclass of Cj. Select Ni as N.)

■ Remove N from S. Add N to the end of L. Continue adding classes from S
to L, as above, until S is empty.

This algorithm can be implemented with the following Dylan program:

define method compute-all-superclasses (c :: <class>)

 let local-precedence-order-constraints

 = add!(compute-constraints(c.direct-superclasses),

 list(c, first(c.direct-superclasses)));

 let monotonicity-constraints

 = reduce1(concatenate,

 map(compose(compute-constraints, all-superclasses),

 c.direct-superclasses));

 let constraints

 =

remove-duplicates(concatenate(local-precedence-order-constraints,

 monotonicity-constraints),

 test: \=);

 let all-supers

 = reduce(union, list(c),

 map(all-superclasses, c.direct-superclasses));

 topological-sort(all-supers, constraints, tie-breaker-rule)

end method compute-all-superclasses;

// Given an ordered list, pair up adjacent elements to give the

// constraint set for the ordering.

C H A P T E R 5

Types and Classes

54 Classes

define method compute-constraints (l :: <list>)

 if (empty?(l) | empty?(l.tail))

 #()

 else

 pair(list(l.first, l.second), compute-constraints(l.tail))

 end

end method compute-constraints;

define method topological-sort

 (elements :: <list>,

 constraints :: <list>,

 tie-breaker :: <function>)

 local method sort (remaining-constraints,

 remaining-elements,

 result)

 local method next-minimal-elements

 (remaining-elements :: <list>)

 choose(method (class)

 ~member?(class,

 remaining-constraints,

 test: method (a, b)

 a == b.second

 end method)

 end method,

 remaining-elements)

 end method next-minimal-elements;

 let minimal-elements =

next-minimal-elements(remaining-elements);

 if (empty?(minimal-elements))

 if (empty?(remaining-elements))

 result

 else

 error("Inconsistent precedence graph ~S.",

 remaining-elements)

 end if

C H A P T E R 5

Types and Classes

Slots 55

 else

 let choice =

 if (empty?(minimal-elements.tail))

 minimal-elements.head

 else

 tie-breaker(minimal-elements, result)

 end if;

 sort(remove(remaining-constraints,

 choice,

 test: method (a, b) member?(b, a) end),

 remove(remaining-elements, choice),

 concatenate(result, list(choice)))

 end if

 end method sort;

 sort(constraints, elements, #())

end method topological-sort;

define method tie-breaker-rule (minimal-elements, cpl-so-far)

 block (return)

 for (cpl-constituent in cpl-so-far.reverse)

 let supers = cpl-constituent.direct-superclasses;

 let common = intersection(minimal-elements, supers);

 unless (empty?(common))

 return(common.head)

 end unless;

 end for

 end block

end method tie-breaker-rule;

Slots 5

Slots are the interface to information about instances. They correspond to the
fields or instance variables of other object-oriented programming languages.
By default, each instance of the class has private storage for each slot, so one
instance can have one value in the slot and another instance can have another

C H A P T E R 5

Types and Classes

56 Slots

value. Some slots are shared among instances, as described in “Slot
Allocation” on page 59.

All slot access is performed by function calls.* The method that returns the
value of a slot is called the getter method, and the method that sets the value of
a slot is called the setter method. The getter and setter methods are added to
generic functions. When defining a class, you specify slots by specifying the
generic functions to which the getter and setter methods should be added.

For example, the class definition for <point> might be

define class <point> (<object>)

 slot horizontal;

 slot vertical;

end class;

This definition indicates that instances of <point> should have two slots,
horizontal and vertical. The getter method for the first slot is added to
the generic function horizontal, and the getter method for the second slot is
added to the generic function vertical. The setter method for the first slot is
added to the generic function horizontal-setter, while the setter method
for the second slot is added to the generic function vertical-setter.

The following two code fragments are equivalent. Each returns the horizontal
coordinate of a point:

horizontal(a-point)

a-point.horizontal;

The following three code fragments each set the horizontal coordinate of a
point to 10:

horizontal-setter(10, my-point)

horizontal(my-point) := 10;

my-point.horizontal := 10;

A slot setter method returns its new value argument.

* This is in contrast to some other languages where slots are accessed through named value ref-
erences.

C H A P T E R 5

Types and Classes

Slots 57

Slot Inheritance 5

Slots are inherited from superclasses.

The collection of all the getter and setter generic functions for slots specified in
a class or inherited from its superclasses must not contain any duplicates.

If a superclass is inherited through multiple paths, its slots are inherited once.
For example, if class A has direct superclasses B and C, and both B and C have
D as a direct superclass, A inherits from D both through B and through C, but
the slots defined by D are only counted once. Because of this, multiple
inheritance does not by itself create any duplicates among the getters and
setters.

Note that two classes which specify a slot with the same getter or setter generic
function are disjoint —they can never have a common subclass and no object
can be an instance of both classes.

Slot Specifications 5

A slot specification describes a slot.

A slot specification must include the name of the getter of the slot (i.e. the name
of the generic function to which the getter method will be added). This is how
slots are identified. The specification may optionally include the name of the
setter method. If it does not, a default name is generated by appending
“-setter” to the name of the getter.

A number of other options are available in slot specifications:

■ An initial value for the slot may be specified with an init specification.

■ An init-keyword may be specified. This allows a value for the slot to be
supplied when an instance is created.

■ Slot allocation may be specified. This controls whether storage for the slot is
allocated in each instance, or some other way.

■ A slot may be specifed as constant. There will be no setter for the slot.

■ A type may be specified. The value of the slot will be constrained to be an
instance of that type.

C H A P T E R 5

Types and Classes

58 Slots

■ A sealing directive may be specified. See “Define Inert Domain” on page 133
for a complete description of the sealing constraints imposed by this
directive.

For the complete syntax of slot specifications, see the reference entry of
define class on page 366.

The following example defines a class with three slots, using a variety of slot
options.

define class <window> (<view>)

 slot title :: <string> = “untitled”;

 slot position :: <point>, init-keyword: window-position:;

 slot color, init-keyword: color:, init-value: $blue-color;

end class <window>;

Init Specifications 5

An init specification provides a default initial value for a slot. It can do this
directly (if it is an init specification of a slot) or it can do it indirectly by
providing a default value for an init-keyword (if it is an init specification of an
init-keyword).

There are three kinds of init specifications:

■ An init value specifies a value that is used to initialize the slot. Each time the
slot needs to be initialized, the identical value is used.

■ An init function specifies a function to be called to generate a value that is
used to initialize the slot. Each time the slot needs to be initialized, the
function is called and its value is used. This allows slots to be initialized to
fresh values, or to values computed from the current program state.

■ An init expression specifies an expression to be executed to generate a value
that is used to initialize the slot. Each time the slot needs to be initialized, the
expression is executed and its value is used. This allows slots to be
initialized to fresh values, or to values computed from the current program
state.

Only one init specification may be supplied in a given slot specification,
inherited slot specification, or initialization argument specification.

In general, an init-function will only be called and an init-expression will only be
executed if its value will actually be used.

C H A P T E R 5

Types and Classes

Slots 59

Init Keywords 5

An init-keyword allows the value of a slot to be specified by a keyword
argument in the call to make when an instance is created. An init-keyword may
be optional or required.

When the value of a slot is provided by a keyword in a call to make, it is called
an initialization argument.

If an init-keyword is specified, the slot is said to be keyword initializable.

Slot Allocation 5

Options for slot allocation include instance, class, each-subclass, and
virtual.

instance allocation specifies that each instance gets its own storage for the
slot. This is the default.

class allocation specifies there is only one storage location used by all the
general instances of the class. All the instances share a single value for the slot.
If the value is changed in one instance, all the instances see the new value.

each-subclass allocation specifies that the class gets one storage location for
the slot, to be used by all the direct instances of the class. In addition, every
subclass of the class gets a storage location for the slot, for use by its direct
instances.

virtual allocation specifies that no storage will be allocated for the slot. If
allocation is virtual, then it is up to the programmer to define methods on
the getter and setter generic functions to retrieve and store the value of the
slot. Dylan will ensure the existence of generic functions for any specified
getter and setter but will not add any methods to them. A virtual slot cannot
specify an init specification or init-keyword. Any required initialization for the
slot must be performed in a method on initialize.

Constant Slots 5

Specifying a slot as constant is equivalent to specifying setter: #f. If the
constant adjective is supplied, it is an error to supply an explicit value for the
setter: keyword in the slot specification. Such slots can only be given values
at instance creation time (with an init specification or init-keyword).

C H A P T E R 5

Types and Classes

60 Slots

define class <person> (<being>)

 constant slot birthplace, required-init-keyword: birthplace:;

end class <person>;

define class <astronaut> (<person>)

 constant class slot employer = #"NASA";

end class <astronaut>;

define class <hair-trigger> (<object>)

 constant slot error-if-touched;

end class <hair-trigger>;

Specializing Slots 5

Slots may be specialized by declaring the type of the slot when a class is
created. Specializing a slot has the following effects on the getter and setter
methods of the slot:

■ The automatically defined slot getter method has its single parameter
specialized on the class that specified the slot and has a value type
declaration that indicates that it returns a single value of the type specified
for the slot.

■ The automatically defined slot setter method has its instance argument
specialized on the class that specified the slot, has its new-value argument
specialized on the type specified for the slot, and has a value type
declaration that indicates that it returns a single value of the type specified
for the slot.

The following example demonstrates how an explicitly defined setter method
can be used to coerce a slot value of the wrong type (<sequence>) to the right
type (<simple-object-vector>).

 define class <person> (<object>)

 slot friends :: <simple-object-vector>, init-value: #[];

 end class;

C H A P T E R 5

Types and Classes

Slots 61

 define method friends-setter (f :: <sequence>, p :: <person>)

 p.friends := as(<simple-object-vector>, f);

 f; // return new-value argument

 end method

 tom.friends := list(dick, harry);

The assignment expression invokes the method with the new-value parameter
specialized on <sequence>, which reinvokes the function with a new-value
argument that is a <simple-object-vector>, which invokes the slot setter
method.

Overriding Slots in Subclasses 5

Some slot options related to instance initialization can be overridden in
subclasses. The mechanisms for doing this are described in “Inherited Slot
Specifications” on page 66 and in “Initialization Argument Specifications” on
page 67.

Using Slots 5

Because slots are accessed through methods in generic functions, they appear
to clients just like any other methods in generic functions. It is possible for a
value to be stored in a slot in instances of one class, but computed from
auxiliary values by instances another class. It is possible to filter the value of a
slot when it is retrieved or stored. In all of these cases, the interface to the
value is a function call, thus hiding the implementation details from clients.

In the following example, the class <view> stores position directly, while
<displaced-view> performs a transformation on the value of the slot when
storing or retrieving it.

define class <view> (<object>)

 instance slot position;

end class;

define class <displaced-view> (<view>)

end class;

C H A P T E R 5

Types and Classes

62 Slots

define method position (v :: <displaced-view>)

 // call the inherited method (the raw slot getter)

 // and transform the result

 displace-transform (next-method (v));

end method;

define method position-setter (new-position,

 v :: <displaced-view>)

 // call the inherited method (the raw slot setter)

 // on the result of untransforming the position

 next-method (displace-untransform (new-position, v);

 new-position; // return the new position

end method;

In other situations, a programmer will want storage in an instance for a slot
value, but will want to perform some auxiliary action whenever the slot is
accessed. In this case, the programmer should define two slots: an instance
slot to provide the storage and a virtual slot to provide the interface. In
general, only the virtual slot will be documented. The instance slot will be an
internal implementation used by the virtual slot for storage. An example of
such use would be a slot that caches a value.

define class <shape> (<view>)

 virtual slot image;

 instance slot cached-image, init-value: #f;

 ...

end class;

define method image (shape :: <shape>)

 cached-image (shape)

 | (cached-image (shape) := compute-image (shape));

end method;

define method image-setter (new-image, shape :: <shape>)

 cached-image (shape) := new-image;

end method;

C H A P T E R 5

Types and Classes

Instance Creation and Initialization 63

Instance Creation and Initialization 5

The creation and initialization of instances is controlled by the generic
functions initialize and make, using initialization information supplied by
the class definition and by keyword arguments in the call to make. Much of this
behavior is supplied by the default make method defined on <class>.

Overview 5

Instance creation and initialization proceeds through the following steps:

■ The program calls make specifying a class and a set of keyword arguments.

■ Optionally, the default make method may be shadowed by a user-supplied
method specialized with a singleton specializer. This enables the user
method to get at all the arguments to make, and to provide actual
instantiation and initializations based on them. For example, a singleton
method on an abstract class can reinvoke make on a concrete subclass of the
abstract class, passing along the same or augmented initialization arguments.

■ The default make method examines its keyword arguments, which are
known as the supplied initialization arguments. It then produces a set of
defaulted initialization arguments by augmenting the supplied
initialization arguments with any additional initialization arguments for
which default values are defined by the class or any of its superclasses.
If the supplied initialization arguments contains duplicate keywords, make
will use the leftmost occurance. This is consistent with keyword argument
conventions used in function calls.

■ The default make method signals an error if any required init-keyword is
absent from the defaulted initialization arguments, or if any of the defaulted
initialization arguments are not valid for initialization of that class. An
initialization argument is valid if it is specified as an init-keyword in a slot
specification or initialization argument specification, or if it is permitted by
one or more of the initialize methods applicable to an instance of the
class.

■ The default make method allocates an instance and initializes all the slots for
which it can provide values, as follows

C H A P T E R 5

Types and Classes

64 Instance Creation and Initialization

n If the slot is keyword initializable and its keyword is present in the
defaulted initialization arguments, then the slot is initialized from the
defaulted initialization arguments.

n If the slot is not initialized by a keyword but has an init specification, it is
initialized from the init specification.

n In either case, an error of type <type-error> is signaled if the value is
not of the type declared for the slot.

■ The default make method then calls initialize on the initialized instance
and the defaulted initialization arguments. Methods on initialize can access
these arguments by accepting them as keyword parameters or in a rest
parameter. If they are accepted in a rest parameter and the defaulted
initialization arguments contained duplicate keywords, it is undefined
whether any entries other than the leftmost for that keyword will be present.

■ Each initialize method typically calls next-method, and then performs
its own initializations. (Note that it won’t have to initialize slots that were
initialized by the default method on make.)

■ The default make method ignores the value of the call to initialize and
returns the instance.

The values of virtual slots are not automatically initialized when a new
instance is created. The programmer must perform any necessary
initialization. This would usually be done inside a method on initialize.
Because the values of virtual slots are often computed from other values at
run-time, many virtual slots will not require any explicit initialization.

Additional Behavior of Make and Initialize 5

The object returned by make is guaranteed to be a general instance of the first
argument to make, but not necessarily a direct instance. This liberality allows
make to be called on an abstract class; it can instantiate and return a direct
instance of one of the concrete subclasses of the abstract class.

define abstract class <dog> (<object>)

end class

define class <yorkshire-terrier> (<dog>)

end class

C H A P T E R 5

Types and Classes

Instance Creation and Initialization 65

define method make (the-class == <dog>, #rest init-args, #key)

 apply(make, <yorkshire-terrier>, init-args)

end

make(<dog>)

⇒ {instance of <yorkshire-terrier>}

make is not required to return a newly allocated instance. It may return a
previously created instance if that is appropriate. If a new instance is allocated,
make will call initialize on the instance before returning it.

The make method on <class> returns a newly allocated direct instance of its
first argument.

Programmers may customize make for particular classes by defining methods
specialized on singletons of classes. These methods may reinvoke make on a
subtype of the class, or they may obtain the default make behavior by calling
next-method.

The default make method signals an error if its first argument is an abstract
class. An instantiable abstract class must override this method with its own
method for make.

Initialization of Class Allocated Slots 5

The initalization of slots with allocation class or each-subclass is performed in
the following way:

■ If the slot is not keyword initializable and the class definition does not
include an init specification for the slot, the slot remains uninitialized until it
is explicitly assigned by the program.

■ If the slot is not keyword initializable and the class definition does include
an init specification for the slot, the slot is initialized from the init
specification before or during the creation of the first instance of the class.

■ If the slot is keyword-initializable and the class definition also includes an
init specification for the slot, the slot may be initialized or assigned by the
default method of make whenever an instance is created, as follows:

n If the corresponding initialization argument is absent from the defaulted
initialization arguments of the call to make and the slot has not yet been
initialized, then the slot is initialized from the init specification. If the slot
has already been initialized, no action is taken.

C H A P T E R 5

Types and Classes

66 Instance Creation and Initialization

n If the corresponding initialization argument is present in the defaulted
initialization arguments of the call to make, then the slot is set to the value
of that initialization argument, regardless of whether the slot was
previously initialized.

Testing the Initialization of a Slot 5

A program can test to see whether a slot has been initialized, using the
slot-initialized? function, described on page 248. There is no portable
mechanism for resetting a slot to the uninitialized state once it has been
initialized.

To support the slot-initialized? protocol in a virtual slot, programmers
must define a method for slot-initialized? that specializes on the getter
of the slot and the class.

Inherited Slot Specifications 5

An inherited slot specification is used to provide an init specification for a slot
inherited from a superclass. It can add an init specification if one was not
already present, or it can override an existing an init specification.

Inherited slot specifications identify the slot to be modified by the getter name.
The inherited slot specification is only allowed if the class does indeed inherit a
slot with that getter.

(An inherited slot specification is not required to include an init specification.
If it does not, its only purpose is to ensure that the slot is present in a
superclass. Because init specifications are not allowed for virtual slots, this is
the only valid form of inherited slot specification for virtual slots.)

If an inherited slot specification supplies an init specification, it overrides any
init specification inherited from a superclass. This allows the init specification
of an inherited slot to be replaced in a subclass, thereby changing the default
initial value of the slot.

define class <animal> (<object>)

 slot n-legs, init-value: 4;

end class;

C H A P T E R 5

Types and Classes

Instance Creation and Initialization 67

define class <spider> (<animal>)

 inherited slot n-legs, init-value: 8;

end class;

Initialization Argument Specifications 5

Initialization argument specifications provide options for the handling of
initialization arguments. They appear in define class forms, and have a
syntax similar to that of slot specifications.

Initialization argument specifications allow the type of an initialization
argument to be restricted, they allow an initialization argument to be declared
to be required, and they allow the specification of a default value for an
initialization argument.

Note that an initialization argument will only be used if it is specified to be the
init-keyword of a slot, or if it is used as a keyword argument in an applicable
method on initialize. An initialization argument specification can supply
a default value for an initialization argument, and it can restrict the type of the
argument or make it required, but it does not by itself cause the argument to be
used when initializing an instance.

There are two kinds of initialization argument specifications: required
initialization argument specifications, and optional initialization argument
specifications.

A required initialization argument specification asserts that the initialization
argument must be present in the defaulted initialization arguments. The
default make method will signal an error if no such initialization argument is
present.

An optional initialization argument specification can be used to specify a
default value for the initialization argument, using an init specification. When
a call to make does not specify the initialization argument, the default make
method will add it to the defaulted initialization arguments with the value of
the init specification.

The type argument has the same meaning in both kinds of initialization
argument specification: it restricts the type of that initialization argument.
Note that this is not the same thing as restricting the type of the slot.

C H A P T E R 5

Types and Classes

68 Instance Creation and Initialization

The following example shows how initialization argument specifications can be
used to override the behavior of a superclass:

define class <person> (<object>)

 slot favorite-beverage, init-value: #"milk",

 init-keyword: favorite-beverage:;

 slot name required-init-keyword: name:;

end class <person>;

define class <astronaut> (<person>)

 keyword favorite-beverage: init-value: #"tang";

 keyword name: init-value: "Bud";

end class <astronaut>;

In this example, thet <astronaut> class provides default values for the
favorite-beverage: and name: init-keywords. In addition to indirectly
supplying default values for these slots, this also has the effect of making the
name: argument optional in calls to make on <astronaut>. If the call to
make does not specify a name:, the name: will be added to the defaulted
initialization arguments by the default make method before the defaulted
initialization arguments are checked for completeness.

More than one keyword initializable slot may be initialized from the same
initialization argument (that is, more than one keyword initializable slot may
specify the same init-keyword). However, an error is signaled if a single
define-class form has more than one initialization argument specification
for the same keyword. An error will also be signaled if a single
define-class form has a keyword initializable slot which includes an init
specification and also includes an initialization argument specification for the
same keyword that is either required or provides a default value. These error
situations are all indications of code that can never be reached.

Initialization Argument Inheritance 5

The inheritance of initialization argument specifications is defined as follows.

■ A slot specification which supplies an init-keyword K by using
required-init-keyword: is treated as if the initialization argument
specification required keyword K had been specified in the class
definition.

C H A P T E R 5

Types and Classes

Instance Creation and Initialization 69

■ A slot specification which supplies both an init-keyword and also an init
specification is not equivalent to an initialization argument specification
which includes both the init-keyword and an init specification. In the
former case the init specification is used to default the value of the slot
directly, but does not affect the defaulted initialization arguments; in the
latter case the init specification is used to default the value of the slot
indirectly, by affecting the defaulted initialization arguments.

■ If the initialization argument is being specified for the first time (it is not
inherited from any superclass) there are three factors to consider:

n The type: argument, which defaults to <object>, specifies the required
type of the initialization argument. (This does not specify the type of the
slot.)

n If the initialization argument is specified with required keyword then
it is required, otherwise it is optional.

n If the initialization argument is specified with keyword, then it can
provide an init specification which is used by the default make method to
provide a default value for the initialization argument in the defaulted
initialization arguments.

■ If an initialization argument specification is being specified for an
initialization argument which is inherited from a single superclass, the
following factors hold:

n The type must be a subtype of the type of the inherited initialization
argument. This implies that the type must be specified unless the type of
the inherited initialization argument is <object>.

n The initialization argument is required if the overriding initialization
argument specification uses required keyword, or if the inherited
initialization argument specification is required and the overriding
initialization argument specification does not provide an init
specification. When the the overriding initialization argument
specification uses required keyword, any init specification in the
inherited initialization argument specification is discarded. This means
that a subclass can make an initialization argument used by a superclass
become required; it can also make a required initialization argument
become optional by specifying a default value for it.

n Otherwise, the initialization argument is optional. If the overriding
specification provides an init specification, then that is used to compute
the defaulted initialization argument when the class is instantiated.
Otherwise, the inherited initial value specification is used.

C H A P T E R 5

Types and Classes

70 Singletons

■ When an initialization argument specification is being inherited from
multiple superclasses, if the superclasses have exactly the same definition
for the initialization argument, then that definition can simply be inherited.
If the definitions differ, then the class which combines these other classes
must provide an initialization argument specification which is compatible
with all of the inherited ones, as described above.

Singletons 5

Singleton types are used to indicate individual objects. When determining
whether a singleton specializer matches a given object, the object must be == to
the object used to create the singleton.

A singleton for an object is created by passing the object to the function
singleton, or by calling the function make on the class <singleton>.

Singleton methods are considered more specific than methods defined on an
object’s class. Singletons are the most specific specializer.

define method double (thing :: singleton(#”cup”))

 #"pint"

end method

double (#"cup")

 ⇒ #"pint"

Dylan provides a concise syntax for singletons used as method specializers.
The folowing definition is equivalent to the one above; it generates a call to the
binding of singleton in the current lexical environment.

define method double (thing == #"cup")

 #"pint"

end method

double (#"cup")

 ⇒ #"pint"

C H A P T E R 5

Types and Classes

Union Types 71

Union Types 5

Union types represent the union of the instances of two other types. Union
types are created with the function type-union. They are not classes.

Union types are useful as slot specializers, and describe the return types of
many common functions. For example, the return type of the collection
method on size could be expressed as type-union(<integer>,
singleton(#f)).

define constant <green-thing> = type-union(<frog>, <broccoli>);

define constant kermit = make(<frog>);

define method red? (x :: <green-thing>)

 #f

end method;

red?(kermit)

 ⇒ #f

The following rules govern subtype? and instance? for union types.

Given

■ x is an object.

■ s1…sm and t1…tn are non-union types.

■ The notation type-union*(t1…tn) stands for any arrangement of nested
calls to type-union, where none of the arguments is a subtype of any
other, and none of the arguments forms an exhaustive partition of any other
type.

Then

type-union(t1, t1) is type equivalent to t1

type-union(t1, t2) is type equivalent to type-union(t2, t1)

type-union(t1, type-union(t2, t3)) is type equivalent to
type-union(type-union(t1, t2), t3)

C H A P T E R 5

Types and Classes

72 Limited Types

type-union(t1, t2) is type equivalent to t2 when subtype?(t1, t2)

instance?(x, type-union*(t1…tn)) will be true if and only if
instance?(x, t) is true for some t in t1…tn.

subtype?(type-union*(t1…tn), s1) will be true if and only if
subtype?(t, s1) is true for every t in t1…tn.

subtype?(s1, type-union*(t1…tn)) will be true if and only if
subtype?(s1, t) is true for some t in t1…tn.

subtype?(type-union*(s1…sm) type-union*(t1…tn)) will be true if
and only if every s in s1…sm is a subtype of some t in t1…tn.

Limited Types 5

Limited types are subtypes of classes constrained by additional criteria.
Limited types are created with the generic gunction limited.
limited(<integer> ,min: 0 max: 255) and limited(<array>,
of: <single-float>) are examples of limited types which are useful both
for error checking and for optimization of compiled code.

Limited types are not classes.

Limited Type Constructor 5

Limited types are created with the generic function limited. The first
argument to limited is a class. Depending on the class, additional keyword
arguments are allowed to specify the constraints of the limited type.

Not all classes support limited; the methods for limited are documented
individually on page 251.

Limited Integer Types 5

Limited integer types are subtypes of <integer> containing integers which
fall within a specifed range. The range is specified by min: and max: keyword
arguments to limited.

C H A P T E R 5

Types and Classes

Limited Types 73

For example:

// accepts integers between -1000 and 1000 inclusive.
define method f (x :: limited(<integer>, min: -1000,
 max: 1000))
 …
 end method f;

//accepts all strictly positive integers.
define method f (x :: limited(<integer>, min: 1))
 …
 end method f;

Limited Integer Type Protocol 5

If w, x, y, and z are integers, the following equivalences hold:

■ instance?(x limited(<integer>, min: y max: z)) will be true if
and only if instance?(x, <integer>), (y <= x), and (x <= z) are all
true.

■ instance?(x, limited(<integer>, min: y)) will be true if and
only if instance?(x, <integer>) and (y <= x) are both true.

■ instance?(x, limited(<integer>, max: z)) will be true if and
only if instance?(x, <integer>) and (x <= z) are both true.

■ subtype?(limited(<integer>, min: w, max: x),
 limited(<integer>, min: y, max: z)) will be true if
and only if (w >= y) and (x <= z) are both true.

■ subtype?(limited(<integer>, min: w …),
 limited(<integer>, min: y …)) will be true if and only if
(w >= y) is true.

■ subtype?(limited(<integer>,… max: x),
 limited(<integer>,… max: z)) will be true if and only if
(x <= z) is true.

C H A P T E R 5

Types and Classes

74 Limited Types

Limited Collection Types 5

Limited collection types are subtypes of <collection> (and of subclasses of
<collection>) which may be constrained to be a specified size and to
contain elements of a specified type.

A complete description of limited collection types is given in “Limited
Collection Types” on page 124 in Chapter 8, “Collections.”

C H A P T E R 6

Contents

75

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Functions

Overview 77
Generic Functions 77
Methods 78

Parameter Lists 82
Kinds of Parameters 83
Kinds of Parameter Lists 84
Specializing Required Parameters 86
Keyword Parameters 87
Result Values 89
Parameter List Congruency 91
Parameter Lists of Implicitly Defined Generic Functions 92

Method Dispatch 93
Calling Less Specific Methods 96

Operations on Functions 98

This document was created with FrameMaker 4.0.4

C H A P T E R 6

76

Contents

C H A P T E R 6

Overview

77

Functions 6

Overview 6

All operations in Dylan are functions.

Functions accept zero or more arguments, and return zero or more values. The

parameter list

 of the function describes the number and types of the arguments
which the function accepts, and the number and types of the values it returns.

There are two kinds of function, methods and generic functions. Both are
invoked in the same way. The caller does not need to know whether the
function it is calling is a method or a generic function.

A method is the basic unit of executable code. A method accepts a number of
arguments, creates local bindings for them, executes an implicit body in the
scope of these bindings, and then returns a number of values.

A generic function contains a number of methods. When a generic function is
called, it compares the arguments it received with the parameter lists of the
methods it contains. It selects the most appropriate method, and invokes it on
the arguments. This technique of

method dispatch

 is the basic mechanism of
polymorphism in Dylan.

All Dylan functions are objects, instances of

<function>

. Generic functions
are instances of

<generic-function>

 and methods are instances of

<method>

.

Generic Functions 6

Generic functions can be created with

define generic

 or by calling

make

 on
the class

<generic-function>

. They are most often created with

define
generic

.

Generic functions may also be created implicitly by

define method

 or by slot
specifications in class definitions.

A generic function definition includes a parameter list, which constrains the
methods that can be added to the generic function; some aspects of the
parameter must be matched by any method added. In addition, a generic
function parameter list may specify that all keyword arguments are permitted
in a call to the generic function.

This document was created with FrameMaker 4.0.4

C H A P T E R 6

Functions

78

Overview

Parameter list congruency is described on page 91. The complete syntax of

define generic

 is given on page 364.

The following definition defines a generic function which accepts a single
required argument. All methods added to this generic function must also
accept a single required argument.

define generic double (thing)

The following definition defines a generic function which accepts two
arguments of type

<number>

. All methods added to the generic function must
accept two required arguments of type

<number>

 or subtype of

<number>

.

define generic average (n1 :: <number>, n2 :: <number>)

Generic functions created with

define generic

 may be sealed or open. For
details of this option, see “Declaring Characteristics of Generic Functions” on
page 133.

Methods 6

Methods can be created with

define method

,

local

, and

method

 program
constituents.

define method

 is used to define a method and add it to a
generic function in a module binding.

local

 is used to create local bindings
that contain self-recursive and mutually-recursive methods.

method

 is used to
create and return methods for immediate application, for use as function
arguments, or for storage in a variable or other data structure. Methods are
also created for slot getters and setters when a class is created.

Methods cannot be created with

make

.

The parameters and return values of a method are described in its parameter
list. The specializers in the parameter list declare the types of the arguments
acceptable to the method. The method can be called only with arguments that
match the specializers of the parameters. A complete description of parameter
lists is given in “Parameter Lists” on page 82.

When the method is invoked, it executes its implicit body. Statements in the
implicit body are executed in order, in an environment which contains the
parameters bound to the arguments.

C H A P T E R 6

Functions

Overview

79

Methods may be invoked directly (used as functions), or indirectly through the
invocation of a generic function.

Methods in Generic Functions 6

define method

 creates a method and adds it to a generic function in a
module variable. If the module variable indicated is not already defined, it is
defined as with

define generic

. Thus,

define method

 will create a new
generic function or extend an old one, as needed. Methods added to a generic
function must have parameter lists that are congruent with the generic
function’s parameter list.

The following method accepts a single argument of type

<number>

, and
returns the number doubled. The method will be added to the generic function
in the module binding

double

.

define method double (thing :: <number>)
 => nother-thing :: <number>;
 thing + thing;
end method;

define method

 allows the programmer to control aspects of the sealing of
the generic function to which the method is added. For more details, see
“Abbreviations for Define Inert Domain” on page 136.

A generic function with no required parameters can contain a single method.
Adding a new method has the effect of replacing the existing method.

The complete syntax of

define method

 is given on page 365.

Local Methods 6

local

 is used for creating methods in local bindings. A single

local

declaration may create one or more such methods. These methods may be
self-recursive and they may be mutually-recursive with other methods created
by the same

local

 declaration.

local

 is similar to

let

 in that it creates local bindings in the current body.
The parameters and the bodies of the methods are within the scope of the
bindings. In this way, the methods can refer to themselves and to other
methods created by the same

local

 declaration.

The complete syntax of

local

 is given on page 379.

C H A P T E R 6

Functions

80

Overview

define method newtons-sqrt (x :: <number>)

 local method sqrt1 (guess)

 // note call to other local method

 if (close-enough? (guess))

 guess

 else

 sqrt1 (improve (guess)) // note self-recursive

call

 end if

 end sqrt1,

 method close-enough? (guess)

 abs (guess * guess - x) < .0001

 end close-enough?,

 method improve (guess)

 (guess + (x / guess)) / 2

 end improve;

 sqrt1 (1)

end method newtons-sqrt;

Bare Methods 6

Methods can also be created and used directly with the

method

 statement.

Methods created directly can be stored in module variables, passed as
arguments to generic functions, stored in data structures, or immediately
invoked.

The following example creates a method and stores it in the module variable
square. It is appropriate to define a method in this way (rather than with
define method) when the protocol of the function being defined does not
require multiple methods.

define constant square = method (n :: <number>)

 n * n;

 end method;

It is sometimes useful to create a method inline and pass it directly to another
function which accepts a method as an argument, as in the following example.

C H A P T E R 6

Functions

Overview

81

// sort accepts a test argument, which defaults to \<

sort(person-list,

 test: method(person1, person2)

 person1.age < person2.age

 end method)

Methods created directly with the

method

 statement may be called directly or
they may be added to generic functions. Usually, however, when you want to
add a method to a generic function, you create and add the method in a single
declarative step, with

define method

.

Closures 6

Methods created with

method

 or

local

 can be passed to functions and
returned from functions. In both cases, the methods retain access to the lexical
context in which they were created. Such methods are called

closures

.

The following example defines a function which returns score-card methods.
The method which is returned is

closed over

 the

score

 parameter. Each time
this method is called, it updates the

score

 parameter and returns its new
value.

define method make-score (points :: <number>)

 method (increase :: <number>)

 points := points + increase;

 end method;

end method make-score;

define constant score-david = make-score(100)

define constant score-diane = make-score(400)

score-david(0)

⇒

 100

score-david(10)

⇒

 110

score-david(10)

⇒

 120

score-diane(10)

C H A P T E R 6

Functions

82

Parameter Lists

⇒

 410

score-david(0)

⇒

 120

Each invocation of

make-score creates a new binding for score, so each
closure returned by make-score refers to a different binding. In this way,
assignments to the variable made by one closure do not affect the value of the
variable visible to other closures.

The following example defines a method for double that works on functions.
When you double a function, you get back a method that accepts arguments
and calls the function twice, passing the same arguments both times. The
method that is returned is closed over the function which was passed in as an
argument.

define method double (internal-method :: <function>)

 method (#rest args)

 apply (internal-method, args);

 apply (internal-method, args);

 #f

 end method

end method;

define constant double-dave = double(score-david);

score-david(0)

 ⇒ 120

double-david(10)

 ⇒ 140

score-david(0)

 ⇒ 140

Parameter Lists 6

The parameter list of a function describes the number and types of the
arguments which the function accepts, and the number and types of the values
it returns.

C H A P T E R 6

Functions

Parameter Lists 83

The parameter list of a generic function is used to define the overall protocol of
the generic function. It constrains the methods that may be added to the
generic function, through the parameter list congruency rules described on
page 91. It may also specify that calls to the generic function may contain any
keyword arguments.

The parameter list of a method specifies the types of arguments to which the
method is applicable, and declares local bindings to which those arguments
will be bound during the execution of the body of the method. It may also
declare the return value types of the method.

Kinds of Parameters 6

Dylan parameter lists support required parameters, rest parameters, keyword
parameters, and sometimes a next-method parameter. They also may include
return type declarations.

The complete syntax of parameter lists is given in “Methods” on page 412.

Required parameters correspond to arguments which must be supplied when a
function is called. The arguments are supplied in a fixed order and must
appear before any other arguments.

Each required parameter may be a name or a name specialized by a type.
Specifying a type declares that supplied argument must be a general instance
of that type.

A rest parameter allows a function to accept an unlimited number of
arguments.* After the required arguments of a function have been supplied,
any additional arguments are collected in a sequence, which is passed as the
value of the rest parameter. This sequence may be immutable, and it may or
may not be freshly allocated. The types of rest parameters cannot be declared.

Keyword parameters correspond to arguments that are optional and may be
given in any order. Symbols are used among the arguments to guide matching
of arguments to parameters. These symbols are usually written in keyword
syntax and so they are known as keywords. Keyword arguments can only be
supplied after all required arguments are supplied. Keyword parameters may
be specialized, restricting which values may be supplied for them. Keyword

* In practice, an implementation may place a reasonable limit on the number of arguments that
may be passed to any function.

C H A P T E R 6

Functions

84 Parameter Lists

parameters may also be given default values to be used when the caller does
not supply a value.

Required parameters come first in the parameter list, followed by the rest
parameter, if any, and then the keyword parameters, if any. A rest parameter is
indicated by the token #rest followed by the name of the parameter.
Keyword parameters are indicated by the token #key followed by the keyword
parameter specifiers, optionally followed by the token #all-keys.

If #rest and #key are used in the same parameter list, #rest must come
first. The rest parameter will be bound to a sequence containing all the
keyword arguments and their corresponding values.

A next-method parameter is indicated by the token #next, followed by the
name of the parameter. It is not normally necessary to specify a next-method
parameter explicitly. If a next-method parameter is not specified by the
programmer, define method inserts one with the name next-method. If an
explicit next-method parameter is given, it must come after the required
parameters and before the rest and keyword parameters. Details of using
next-method are given in “Calling Less Specific Methods” on page 96.

Kinds of Parameter Lists 6

Each function (generic function or method) has an argument passing protocol
specified by its parameter list. The argument passing protocol for a method
must be compatible with the argument passing protocol of any generic
function to which it is added, as described in “Parameter List Congruency” on
page 91.

The argument passing protocol of a function can be described in one of the
following ways:

■ A function is said to require a fixed number of arguments if its parameter
list does not specify either #rest or #key.

■ A function is said to accept keyword arguments if its parameter list specifies
#key. The parameter list could also specify #rest if it is a method, but not
if it is a generic function.

■ A function is said to accept all keyword arguments if its parameter list
specifies #all-keys in addition to #key.

C H A P T E R 6

Functions

Parameter Lists 85

■ A function is said to accept a variable number of arguments if its parameter
list specifies #rest but does not specify #key. (Note: if the parameter list
specifies #key in addition to #rest it is not said to accept a variable
number of arguments.)

A method that accepts keyword arguments is said to recognize the keywords
mentioned in its parameter list. (A method may, of course, mention them in
the parameter list and then ignore their values. It is still said to recognize
them.) It is possible for a method to accept keyword arguments in general but
not recognize any particular keywords; it does this by specifying #key without
any subsequent keyword parameters.

If a generic function that accepts keyword arguments mentions any specific
keyword arguments in its parameter list, these are the mandatory keywords of
the generic function. Every method added to the generic function must
recognize these keywords.

A function may accept all keyword arguments by specifying #all-keys in its
parameter list.

When a function that accepts keyword arguments is called, it is said to permit a
keyword argument in the call if one of the following is true

■ The function is a method that recognizes the keyword.

■ The function is a generic function and the keyword is recognized by any of
the applicable methods of the call.

■ The function accepts all keyword arguments.

■ The function is a generic function and any of the applicable methods of the
call accepts all keyword arguments.

If a function that accepts keyword arguments is called, it will signal an error if
called with a keyword argument that it does not permit, or if the arguments
following the required arguments are not keyword/value pairs. This is true
even if the function specifies #rest.

If a method is called via a generic function or via next-method (rather than
directly), the method itself does not check whether it received any keyword
arguments it does not permit, nor does it check that the arguments following
the required arguments are keyword/value pairs. This check is performed by
the generic function or next-method, and is made relative to the call as a whole,
not relative to an individual method or the methods remaining to be called.

C H A P T E R 6

Functions

86 Parameter Lists

A call to a function may supply the same keyword argument more than once.
When this is done, the leftmost keyword/value pair is used.

Specializing Required Parameters 6

When you define a generic function or method, you may specify the types of
the arguments appropriate for the generic function or method. This is called
specializing the generic function or method, or specializing the parameters of
the generic function or method.

The following example defines a method specialized on <number>. The
method will be applicable when double is called on a general instance of
<number>.

define method double (thing :: <number>)

 thing + thing;

end method;

Specialization constrains the values that may be passed as the value of a
parameter. The function can be called only with arguments that are instances
of the specializers of the corresponding parameters.

Specialization is useful in three way:

■ It makes the intent of the program clear. It indicates to the compiler and to
anyone reading the code that an error is signaled if an argument is not of the
specializer type.

■ It allows the compiler to perform additional optimizations.

■ It is used to control method dispatch. By defining methods on the same
generic function with different specializers, you can define behavior
applicable to different sets of types. A generic function chooses among its
methods on the basis of the methods’ specializers. The generic function
chooses the method whose specializers most closely match the types of the
arguments.

Syntactically, specializers are operands. These operands are executed once
when the function is created. They are not re-executed each time the function is
called. The value of the operand must be a type.

It is most common for specializers to be constant module bindings or calls to a
built-in type constructor such as singleton, limited, or union.

C H A P T E R 6

Functions

Parameter Lists 87

There is a convenient syntax for singleton specializers, which is equivalent to
explicitly calling singleton in the current lexical scope.

Keyword Parameters 6

The syntax of a keyword parameter is:

[keyword] name [:: operand] [= expression]

If keyword is not supplied, then name is used to indicate both the keyword and
the name of the parameter. If the keyword and name are given independently,
the keyword is used when calling the method, and the name is used as the name
of the parameter inside the body of the method.

The expression supplies a default value for the parameter. It is used when the
method is called and the keyword is not supplied. It is executed each time the
method is called and the corresponding keyword argument is not supplied. If
no expression is specified, the parameter corresponding to an unsupplied
keyword argument is initialized to #f. The expression is executed in a scope
that includes all the preceding parameters, including required parameters, the
rest parameter (if any), the preceding keyword parameters, and the
next-method parameter (if any).

In the following example, all three keyword parameters have default values,
and all three use the same name for the keyword and the parameter.

define method percolate (#key brand = #"maxwell-house",

 cups = 4,

 strength = #"strong")

 make-coffee (brand, cups, strength);

end method;

The caller can choose which keyword arguments to supply and what order to
supply them in:

percolate (brand: #"java", cups: 10);
percolate (strength: #"strong",
 brand: #"starbucks",
 cups: 1);

C H A P T E R 6

Functions

88 Parameter Lists

The following method has two keyword parameters. In each, the name of the
keyword and the name of the parameter is specified separately. The first
keyword parameter has a default value, the second does not.

define method layout (widget, #key position: the-pos = 0,

 size: the-size)

 let the-sibling = sibling (widget);

 unless (the-pos = position (the-sibling))

 align-objects (widget, the-sibling, the-pos, the-size);

end method;

layout(my-widget, position: 100, size: 500);

layout(my-widget, size: query-user-for-size());

The keyword parameter syntax in which the keyword name and parameter
name are given separately is needed to allow keyword names such as
position: without forcing the method to use position as a local binding.
If a method uses position as a local binding, it cannot access the module
binding position (which contains a function). The local binding would
shadow the module binding.

All required arguments must be supplied before any keyword arguments can
be supplied. The following call to layout will signal an error:

layout(position: 100, size: 500);

Types for Keyword Parameters 6

When a type is indicated for a keyword parameter in a method, it is the same
as establishing a type for a local binding. Specifically, the types of any
keyword parameters are not used for method dispatch. Keyword parameter
types are not allowed in generic function definitions, and do not figure into
parameter list congruency.

The following two method definitions are equivalent:

method (#key X :: <integer>)

 ... X ...

end method;

C H A P T E R 6

Functions

Parameter Lists 89

method (#key X)
 let X :: <integer> = X;
 ... X ...
end method;

If a keyword parameter is given a type, if #f is not an instance of that type, and
if they keyword parameter is not given a default value, then the keyword
parameter is essentially required. An error of type <type-error> will be
signaled if a call to the method does not include the keyword.

The following examples include keyword parameters that include both a type
and a default value.

define method find-happiness (#key hint :: <symbol> = #"here")

 ...

end method find-happiness;

define method find-food (#key hint :: <restaurant>

 = lookup-default-restaurant())

 ...

end method find-food;

Result Values 6

Parameter lists may include value declarations. Value declarations come at the
end of the parameter list and are separated from the parameters by =>. For
each return value, a value declaration can specify a name and an operand or
just a name if the type is <object>. The complete syntax of value declarations
is given in “Methods” on page 412.

The result of executing the operand at the time the function is defined is a type,
called a value type. The name never comes into scope. It is included for
documentation and for syntactic consistency with parameters. It is valid for
the same name to be used in both one parameter and one value declaration in
the same parameter list; this is useful as documentation that a function returns
one of its arguments.

The last value declaration can be preceded by #rest to indicate a variable
number of return values. A value declaration preceded by #rest is called a
rest value declaration. A value declaration not preceded by #rest is called a
required value declaration. The value type in a rest value declaration is the

C H A P T E R 6

Functions

90 Parameter Lists

type of each one of the remaining individual values, not the type of a
conceptual sequence of multiple values.

If a parameter-list does not contain a value declaration, it defaults to =>
#rest x :: <object>. That is, the function can return any number of
values of any type.

A function will always return the number and types of values declared in its
parameter-list. More precisely:

■ Each value returned by a function must be an instance of the corresponding
value type, or else an error of type <type-error> will be signaled.

■ If fewer values are returned by the function’s body (or by the applicable
method if the function is a generic function) than the number of required
value declarations in the function’s parameter-list, the missing values are
defaulted to #f and returned. If #f is not an instance of the corresponding
value type, an error of type <type-error> is signaled.

■ If a function does not have a rest value declaration, and more values are
returned by the function’s body (or by the applicable method if the function
is a generic function) than the number of required value declarations in the
function’s parameter-list, the extra values are discarded and not returned.

Because of the parameter list congruency rules for result value declarations, the
values returned by a generic function do not have to be checked by the generic
function. The check inside a method will always be enough to verify that the
return values are valid for the generic function.

define method average (x :: <number>, y :: <number>)

 => mean :: <number>;

 (x + y) / 2

end method;

// Returning multiple values

define method limits (center :: <number>, radius :: <number>)

 => (min :: <number>, max :: <number>);

 values(center - radius, center + radius);

end method;

C H A P T E R 6

Functions

Parameter Lists 91

// The same name used both as a parameter and as a value type

define method rotate (image :: <picture>)

 => (image :: <picture>, rotation-angle :: <number>);

 …

end method;

// This method can return one, two, or three values

define method family (kid :: <person>)

 => (kid :: <person>, #rest parents);

 let mom = kid.mother;

 let dad = kid.father;

 case

 mom & dad => values(kid, mom, dad);

 mom => values(kid, mom);

 dad => values(kid, dad);

 otherwise => kid;

 end case

end method family;

Note that the following example does not declare a return value of type
<number>. It declares a return value of type <object>. To specify a type, both
the name and the type must be specified. If only one is given, it is taken as the
name.

define method average (x :: <number>, y :: <number>)

 => <number>;

 (x + y) / 2

end method;

Parameter List Congruency 6

For any given generic function, the generic function and all methods for that
function must have congruent parameter lists. Two parameter lists are
congruent if they satisfy the following conditions:

■ They have the same number of required arguments.

■ Each of the method’s parameter specializers is a subtype of the
corresponding parameter specializer of the generic function.

C H A P T E R 6

Functions

92 Parameter Lists

■ One of the following is true:

n both accept keyword arguments

n both accept a variable number of arguments

n both require a fixed number of arguments

■ If the generic function accepts keyword arguments, each method must
recognize the mandatory keywords of the generic function.

In addition, the value declarations must be congruent, defined as follows:

■ If the generic function’s parameter list does not contain a rest value
declaration, then

n The method’s parameter list must not contain a rest value declaration.

n The two parameter lists must contain the same number of required value
declarations.

n Each value type in the method’s parameter list must be a subtype of the
corresponding value type in the generic function’s parameter list.

■ If the generic function’s parameter list contains a rest value declaration, then:

n The method’s parameter list is permitted, but not required, to contain a
rest value declaration.

n The method’s parameter list must contain at least as many required value
declarations as the generic function’s parameter list.

n Each value type in the method’s parameter list must be a subtype of the
corresponding value type in the generic function’s parameter list. If the
method has a rest value type, it corresponds to the generic function’s rest
value type. If the method has more required value types than the generic
function, the extra ones must be subtypes of the generic function’s rest
value type.

Parameter Lists of Implicitly Defined Generic Functions 6

As a general principle, the parameter list of an implicitly defined generic
function will impose as few constraints as possible on the methods that may be
added. If a more constrained generic function definition is desired, an explicit
definition should be used.

The parameter list of an implicitly defined generic function is determined by its
method definitions. These method definitions include both methods defined

C H A P T E R 6

Functions

Method Dispatch 93

using define method and slot getter and setter methods defined using
define class.

■ The implicitly defined generic function has the same basic argument pattern
as the methods. Either they must all require a fixed number of arguments,
they must all accept a variable number of arguments, or they must all accept
keyword arguments. A set of methods that includes members with more
than one of these patterns violates the parameter list congruency
requirement, and is an error.

■ The implicitly defined generic function has the same number of required
arguments as the methods. A set of methods that includes members with
different numbers of required arguments violates the parameter list
congruency requirement, and is an error.

■ Each required argument of the implicitly defined generic function is
specialized on <object>.

■ If the implicitly defined generic function accepts keyword arguments, it does
not have any mandatory keywords, nor does it accept all keyword
arguments.

■ The implicitly defined generic function has a rest value declaration of
<object>.

Method Dispatch 6

When a generic function is called, the generic function uses the types of the
arguments to determine which methods to call. This process is called method
dispatch.

Method dispatch occurs in three phases. First, all the applicable methods are
selected. Next, the applicable methods are sorted by specificity. Finally, the
most specific method is called.

Method Specificity 6

For any two methods A and B that are applicable to a given generic function
call, one method may be more specific than the other, or the methods may be
ambiguous methods.

C H A P T E R 6

Functions

94 Method Dispatch

To order two methods A and B with respect to a particular set of arguments,
compare each of A’s specializers with B’s specializer in the corresponding
position using the argument that was supplied for that position. The
comparison works in the following way.

■ If the specializers are type equivalent, then A and B are unordered at the
current argument position. That is, this argument position provides no
information about the order of the two methods.

■ Otherwise, if the specializer of A is a subtype of the specializer of B, then A
precedes B at the current argument position.

■ Otherwise, if both specializers are classes, then their order in the class
precedence list of the argument’s class is used to determine which is more
specific. If A’s specializer precedes B’s specializer in the class precedence list
of the argument’s class, then A precedes B at the current argument position.

■ Otherwise, the methods are unordered in the current argument position.

The method A is more specific than the method B if and only if A precedes B in
at least one argument position, and B does not precede A in any argument
position. Similarly, B is more specific than A if and only if B precedes A in at
least one argument position, and A does not precede B in any argument
position. If neither of these cases apply then A and B are ambiguous methods.

When the applicable methods are sorted by specificity, the sorted list is divided
into two parts, each possibly empty. The first part contains methods that are
more specific than every method that follows them. The second part (which
cannot itself be sorted) begins at the first point of ambiguity; there are at least
two methods that could equally well go first in the second part. When a
generic function is called, if the first part of the sorted applicable methods is
empty then an error is signaled. Similarly, if the last method in the first part
attempts to call next-method, an error is signaled.

C H A P T E R 6

Functions

Method Dispatch 95

Consider the following class definitions:

define class <sentient> (<life-form>) end class;

define class <bipedal> (<life-form>) end class;

define class <intelligent> (<sentient>) end class;

define class <humanoid> (<bipedal>) end class;

define class <vulcan> (<intelligent>, <humanoid>) end class;

Computing the class precedence list for <vulcan> yields

#(<vulcan>,<intelligent>,<sentient>,<humanoid>,<bipedal>,<life-fo

rm>)

The class precedence lists computed for two different classes may have
different precedence orders for some intermediate superclasses. This is not a
problem as long as there is no class which inherits from both classes. For
example, we could define a class <human> as follows:

define class <human> (<humanoid>, <intelligent>) end class;

For the class <human> defined as above, the class precedence list would be

(<human>,<humanoid>,<bipedal>,<intelligent>,<sentient>,<life-form

>)

It is not a problem that the two class precedence lists give different orders to
some of the intermediate superclasses such as <bipedal> and <sentient>
as long as no class is added which inherits from both <vulcan> and <human>.

When sorting the applicable methods, each specializer needs to be viewed with
respect to the class precedence list for the class of the argument passed to the
generic function in that argument position. For example, given the following
definitions

define method psychoanalyze (being :: <intelligent>)

 …

 end method;

C H A P T E R 6

Functions

96 Method Dispatch

define method psychoanalyze (being :: <humanoid>)

 …

 end method;

calling the generic function psychoanalyze on a being of type <human>
would cause the method for <humanoid> to be called first, while calling the
generic function on a being of type <vulcan> would cause the method for
<intelligent> to be called first.

The order of arguments is not significant when computing method specificity.
Given the above class definitions, the following methods are unambiguous
when their generic function is called on two beings of type <vulcan> or two
beings of type <human>, but the methods are ambiguous when the call
includes one being of type <vulcan> and one of type <human>.

define method superior-being (a :: <intelligent>,

 b :: <intelligent>)

 most-intelligent-being (a, b)

 end method;

define method superior-being (a :: <humanoid>,

 b :: <humanoid>)

 best-looking-being (a, b)

 end method;

Calling Less Specific Methods 6

In many situations, a subtype wants to modify the behavior of a method, rather
than replace it completely; it wants to perform some work but also use the
inherited behavior. This can be accomplished with next-method. Next-method
is a function that, when called, invokes the next most specific method
applicable in the generic function. The next-method is the value of the #next
parameter. Normally this parameter is named next-method, though it can
have other names at the programmer’s discretion.

One can think of next-method as invoking the method which would have been
called if the current method did not exist.

If there are no more methods available, the next-method parameter will be
bound to the value #f instead of to a method.

C H A P T E R 6

Functions

Method Dispatch 97

Passing Different Arguments to Next-Method 6

In the usual case, next-method is called with no arguments. This indicates that
the next-method should be passed the same arguments that were supplied to
the current method.

It is valid to supply arguments, including different arguments, when calling
next-method. However, if you pass different arguments, the new arguments
must result in the same ordered sequence of applicable methods as the original
arguments. Otherwise, the program behavior is undefined.

In some cases, the methods in a generic function accept different keyword
arguments. In such cases, it’s convenient for the methods also to accept a rest
parameter. That way, all the keyword/value pairs passed to the generic
function are captured in the rest parameter. By using apply, the next-method
can be invoked with the complete set of arguments. (This technique is only
necessary, of course, when the method calls next-method and passes arguments
explicitly.)

As usual, if there are duplicates of a given keyword argument, the leftmost
occurance is used. This allows keyword arguments to be easily overridden.

The Next-Method Parameter 6

The value of the next-method parameter is supplied by the generic function
dispatch mechanism. When a method is called by its generic function, the
generic function dispatch mechanism automatically passes the appropriate
value for next-method. There is no way for a user program to specify the
next-method argument when calling a method.

If you create a method directly (i.e., with method rather than with define
method) and you want this method to accept a next-method parameter, then
you should insert a #next into the parameter list explicitly. You would do this
if you are creating a method that you plan to add to a generic function, and you
want this method to be able to call next-method. You can also supply the
next-method parameter when using define method, in cases where you
want to give the parameter a different name.

C H A P T E R 6

Functions

98 Operations on Functions

Operations on Functions 6

The Dylan language defines a number of functions which operate on other
functions.

There are two broad categories of these functions:

■ Introspective functions take a function as an argument and return
information about it. These are described in “Reflective Operations on
Functions” on page 340.

■ Higher order functions take one or more functions as arguments, and return
a new function. These are described in “Functional Operations” on page 334.

C H A P T E R 7

Contents

99

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Conditions

Background 101
Overview 103
Signalers, Conditions, and Handlers 103
Exception Handling 105

Stack Model 105
Recovery and Exits 106
Restarts 109
Recovery Protocols 110

Condition Messages 111
Introspective Operations 112

This document was created with FrameMaker 4.0.4

C H A P T E R 7

100

Contents

C H A P T E R 7

Background

101

Conditions 7

Background 7

A long-standing problem of software engineering is the need to develop an
organized way to deal with exceptions, situations that must be handled
gracefully but that are not conceptually part of the normal operation of the
program.

Of course it is possible to program exception handling without using special
linguistic features. For example, all functions could return an extra result that
indicates whether they succeeded or failed, functions could take an extra
argument that they consult if an exception occurs, or a designated
exception-handling function could be called whenever a problem arises. All of
these approaches have been used in one real-life system or another, but they
are deficient in two ways. First, they are too informal and don’t provide
enough structure to allow an organized, systematic approach to exception
handling. Second, and more importantly, the first two approaches do not
provide textual separation between “normal code” and “code for dealing with
exceptions”; exception-related code is sprinkled throughout the program. This
leads to two problems: one is the well-known mistake of forgetting to test error
codes and thus failing to detect an exception (perhaps because the programmer
believed the error could never occur); the other is that program clarity is lost
because it isn’t easy to think about the main flow of the program while
temporarily ignoring exceptions.

All exception systems involve the concept of “signal” (sometimes with a
different name, such as “raise” or “throw”) and the concept of “handle”
(sometimes with a different name such as “on-unit” or “catch”). Most
exception systems dynamically match signalers with handlers, first invoking
the most recently established matching handler still active, and then, if that
matching handler declines to handle the exception, invoking the next most
recent matching handler, and so on.

In addition, it is necessary to have a way to clean up when execution of a
function is terminated by a non-local exit initiated either by the function itself
or by something it explicitly or implicitly called.

Exception systems may be name-based or object-based, they may be exiting or
calling, and they may or may not provide formal recovery mechanisms.

This document was created with FrameMaker 4.0.4

C H A P T E R 7

Conditions

102

Background

In a name-based exception system a program signals a name, and a handler
matches if it handles the same name or “any.” The name is a constant in the
source text of the program, not the result of an expression.

In an object-based exception system a program signals an object, and a handler
matches if it handles a type that object belongs to. Object-based exceptions are
more powerful, because the object can communicate additional information
from the signaler to the handler, because the object to be signaled can be chosen
at run-time rather than signaling a fixed name, and because type inheritance in
the handler matching adds abstraction and provides an organizing framework.

In an exiting exception system, all dynamic state between the handler and the
signaler is unwound before the handler receives control, as if signaling were a
non-local goto from the signaler to the handler.

In a calling exception system the signaler is still active when a handler receives
control. Control can be returned to the signaler, as if signaling were a function
call from the signaler to the handler.

Exiting exception systems are acceptable for errors. However, they do not
work for an exception that is not an error and doesn’t require an exit, either
because there is a default way to handle it and recover or because it can safely
be ignored by applications that don’t care about it. Non-error exceptions are
quite common in networked environments, in computers with gradually
expiring resources (such as batteries), in complex user interfaces, and as one
approach for reflecting hardware exceptions such as page protection violations
or floating-point overflow to the application.

Most languages have not formalized how to recover from exceptions, leaving
programmers to invent ad hoc mechanisms. However, a formal recovery
mechanism is useful for several reasons: it ensures that recovery is
implemented correctly; it allows options for recovery to be categorized just as
exceptions are categorized; and it allows introspection on the options for
recovery, for example by a debugger.

The Dylan exception facility is object-based. It uses calling semantics but also
provides exiting handlers. It provides formal recovery.

C H A P T E R 7

Conditions

Overview

103

Overview 7

The Dylan exception system is built on top of an underlying signal system.
Together, the signal system and the exception system comprise the Dylan
condition system.

At the signal layer, the condition system provides a way of establishing a
run-time connection between a

signaler

 and a

handler

 through a

condition

.
This is essentially a run-time analog to the more usual fixed connection
between a caller and a callee established through function-name matching.
This layer of the condition system is little more than a way to locate and call a
function. The function call does not necessarily involve any exceptional
situation or non-local flow of control.

At the exception layer, the condition system specifies a set of protocols for
categorizing and handling exceptional situations through

recovery

 or

exit

.
This higher layer provides overall structure, eliminates the possibility of failing
to notice an exceptional situation, and provides a clean separation between
“normal code” and “code for dealing with exceptions.”

The non-local exit and clean-up features of the

block

 statement are often used
in conjunction with the facilities described in this chapter.

block

 is described
on page 392.

Signalers, Conditions, and Handlers 7

A condition is an object used to locate and provide information to a handler. A
condition represents a situation that needs to be handled. Examples are errors,
warnings, and attempts to recover from errors. All conditions are instances of

<condition>

. Several subclasses of

<condition>

 are provided for
additional behavior. These are described in “Conditions” on page 234.

A handler is a function for handling conditions of a particular type. Handlers
may be installed dynamically with the local declaration

let handler

, and
with the

exception

 clause of the

block

 statement. Dynamically installed
handlers are active for the duration of the execution of a body. More recently
installed handlers take precedence over less recently installed handlers. If no

C H A P T E R 7

Conditions

104

Signalers, Conditions, and Handlers

dynamically installed handler handles a condition, the generic function

default-handler

 is called.

default-handler

 has predefined methods
and may also have program-defined methods.

Signaling is the mechanism for locating the most recently installed handler for
a condition. The basic mechanism for signaling is the function

signal

.
Several functions built on

signal

 are provided for additional behavior. These
are described in “Signaling Conditions” on page 346.

When a condition is signaled, the condition facility locates the most recently
installed applicable handler and calls it. An applicable handler is one that
matches the signaled condition by type and by an optional test function
associated with the handler. The condition system is simply a way for a
signaler and a handler to be introduced to each other. Once they have met,
they communicate through an ordinary function call. The condition object is
the argument to that call.

Like any function, the called handler either returns some values or takes a
non-local exit. Either way, the handler has handled the condition, and the act
of signaling is completed.

A handler also has the option of declining to handle the condition by passing
control to the next applicable handler. It does this by tail recursively calling a
next-handler function which it received as an argument. The next-handler
function calls the next most recently installed applicable handler with
appropriate arguments. This is analogous to the next-method function used in
methods of generic functions.

(The call to next-handler is described as tail-recursive to ensure that all values
returned by the call are returned by the handler. Not returning all the values
could interfere with the condition’s recovery protocol. A handler that really
knows what it is doing could use a non-tail-recursive call, but anything that
knows what it’s doing in this situation is probably unmodular. Note that a
handler might not know the full recovery protocol, because the condition
might be a subtype of the handler’s expected type.)

Every signaled condition is handled, because the system ensures that there is
always an applicable default handler which does not decline.

If a handler handles a condition by returning (rather than by taking a non-local
exit) the values it returns are returned by

signal

.

C H A P T E R 7

Conditions

Exception Handling

105

Exception Handling 7

A set of classes, functions, and associated conventions extend the underlying
condition handling capabilities to provide a complete exception handling
facility.

The classes are described in “Conditions” on page 234, and the functions are
described in “Signaling Conditions” on page 346.

Stack Model 7

Condition handlers are installed dynamically, with more recent handlers
shadowing previously installed handlers. In addition, exception handling
often involves the use of non-local exits. For these reasons it is useful to
describe the behavior of the exception system using the following terms from
the stack model of function calling.

■

outside stack

The state existing just before the handler was established

■

signaling unit

The conceptual program component that includes the expression that
signaled the condition and does not include the expression that established
the handler. This informal concept provides a notion of where the interface
boundary between the signaler and the handler lies.

■

middle stack

The state existing just before the signaling unit was called, minus the outside
stack. In other words, the state between the handler and the signaling unit.

■

inside stack

The state existing just before signaling occurred, minus the middle stack and
outside stack. In other words, the portion of the signaling unit prior to the
call to

signal

.

CHAPTER 7

Conditions

106 Exception Handling

Figure 7-1

The handler in Figure 7-1 may either return normally, in which case execution
resumes as the call to signal returns normally, or the handler may make a
non-local exit, such as calling the exit function from a dynamically active
block statement.

Recovery and Exits 7

There are two ways to handle an exception: by recovery, or by exit. Recovery
involves making some repair to the program state and leaving control in the
signaling unit. Exit involves transfering control outside of the signaling unit
through the use of a non-local exit.

handler
established here

non-local exit

return

outside stack

middle stack

inside stack

signal(…)

handler executes here

signalling unit

other units

handling unit

other units

Flow of control
from handler

Call stack

return

call

C H A P T E R 7

Conditions

Exception Handling

107

The simplest way to handle an exception is to exit the signaling unit by taking
a non-local exit to a target established in the outside stack. The

exception

clause of the

block

 statement provides a convenient mechanism for
accomplishing this.

A less common handling style is to exit the signaling unit by taking a non-local
exit to a target established in the middle stack, thus leaving the handler in force.

Instead of exiting, a handler can recover by returning control to the signaling
unit. This can be done either by returning values that the signaling unit will
understand or by taking a non-local exit to a target established in the inside
stack.

The following examples show three ways of handling a copy-protection
violation while copying a series of files. Note that the signaling code does not
need to know how the condition will be handled. The only changes are in the
code which handles the condition.

// Assume there is a class for file-system errors.

// We are interested in a special kind of file-system error

// that occurs when attempting to copy a copy-protected file,

// so we define a new class to indicate such errors.

define class <copy-protection-violation> (<file-system-error>)

 slot file, init-keyword: file:; // Store the file name

end class;

// Define a function to copy a single file. This

// function signals a <copy-protection-violation> if

// the file is copy-protected.

define method copy-file (source, destination)

 if (copy-protected?(source))

 signal(make(<copy-protection-violation>, file: source));

 else

 // copy normally

 notify-user("Copying %s to %s.", source, destination);

 end if;

end method;

C H A P T E R 7

Conditions

108

Exception Handling

// The following function copies a sequence of files.

// If one of the files is copy-protected, the user is

// notified, and the remaining files are copied.

define method backup-all-possible (volume, archive)

 let handler <copy-protection-violation>

 = method (condition, next)

 // The handler just notifies the user and continues

 notify-user("The file %s could not be copied.",

 condition.file);

 end method;

 // start copying files, with the handler in effect

 for (each-file in volume)

 copy-file(each-file, archive)

 end for;

end method;

// The following function stops copying as soon as it

// hits a copy-protected file

define method backup-exit (volume, archive)

 // set up a block so we can do a non-local exit

 block (exit)

 let handler <copy-protection-violation>

 = method (condition, next)

 // Notify the user and abort the backup

 notify-user(

 "Backup interrupted: the file %s could not be copied.",

 condition.file);

 exit(#f);

 end method;

 // start copying files, with the handler in effect

 for (each-file in volume)

 copy-file(each-file, archive)

 end for;

 end block;

end method;

C H A P T E R 7

Conditions

Exception Handling

109

// The following function uses the convenient exception clause of

// the block statement to achieve essentially the same effect as

// as backup-exit.

define method backup-block (volume, archive)

 // get ready to do backups

 block ()

 // start copying files

 for (each-file in volume)

 copy-file(each-file, archive)

 end for;

 exception (condition :: <copy-protection-violation>)

 notify-user(

 "Backup interrupted: the file %s could not be copied.",

 condition.file);

 end block;

end method;

Restarts 7

Recovering or exiting can be accomplished directly, or a more formal
mechanism called

restarting

 can be used. Using restarts provides more
assurance that the handler and the signaling unit agree on the meaning of what
they are doing and provides some isolation of the handler from names and
data representations internal to the signaling unit.

A handler restarts by signaling a restart. All restarts are instances of

<restart>

. Any values needed for recovery are passed in the restart (that is,
in initialization arguments that the restart remembers, typically in slots). The
restart is handled by a restart handler which either returns or takes a non-local
exit. If the restart handler returns some values,

signal

 returns those values
and the handler that called

signal

 also returns them. The call to

signal

from the signaling unit that signaled the original condition returns the same
values, and the signaling unit recovers as directed by those values.

C H A P T E R 7

Conditions

110

Exception Handling

Recovery Protocols 7

For every condition class there should be a

recovery protocol

 that defines the
meaning of handling by returning, the meaning of the values returned, and
which restart handlers are supposed to be established by the signaling unit.
The recovery protocol tells the handler what to expect from the signaler. For
many condition classes, this is the empty protocol: handling by returning isn’t
allowed, and no particular restart handlers are provided. In this case only
handling by exiting is possible. (Exiting might be accomplished by signaling a
restart whose handler was established in the outside or middle stack and does
a non-local exit back to where it was established, or by an ordinary non-local
exit.) The recovery protocol for a subclass should be compatible with the
recovery protocol of a superclass. That is, a handler that applies a class’s
recovery protocol should operate correctly when the condition is an instance of
some subclass of that class.

An example recovery protocol for a hypothetical

<unbound-slot>

 condition
could include the following:

■

Returning is allowed. Returning a value uses that value as if it had been the
contents of the slot.

■

A restart handler for

<new-value>

 is available.

<new-value>

 has
initialization arguments

value:

, the value to use, and

permanent:

, which
indicates whether to store the value into the slot or leave the slot unbound.

At present, no formal mechanism is provided for describing recovery protocols;
they are left to the documentation of a condition class. Introspective functions
are provided for discovering which recovery facilities are actually available,
but this is different from (and sometimes is a superset of) the recovery facilities
guaranteed by a recovery protocol always to be available.

The debugger is the condition handler of last resort which receives control if no
program-provided handler handles a serious condition. (This is true even if
the debugger provided cannot analyze or intervene in the execution of
programs but can only abort or restart them. The debugger might be merely a
“core dumper,” a “bomb box,” or something similar.) An interactive debugger
ought to offer the user the ability to signal any restart for which a restart
handler is applicable and to return if the condition’s recovery protocol allows
it. This could, for example, be done with a menu titled “Recovery.”

C H A P T E R 7

Conditions

Condition Messages

111

Condition Messages 7

Some condition classes provide a message to communicate the meaning of the
condition to the program user.

Condition messages are constructed using

format strings

. A format string is a
string template into which values can be inserted to construct a message. The
two-character

format directives

%d

,

%b

,

%o

,

%x

,

%c

,

%s

, and

%=

 are replaced by
the corresponding element of the associated sequence of

format arguments

.
Upper and lower case letters are equivalent in these format directives. The
inserted value is formatted according to the following table:

*

The text printed by the

%=

 format directive for any given object is
implementation-defined. The behavior when a format argument is not of the
type specified in the table above is implementation-defined. The behavior

*

These format directives are designed for compatibility with C’s

printf

, with some
ommisions and with the addition of %=.

Table 7-1 Format Directives

Directive Argument Type Textual Format

%d <integer> decimal number

%b <integer> binary number

%o <integer> octal number

%x <integer> hexadecimal number

%c <character> character (with no quotes)

%s <string> string (with no quotes)

%s <condition> condition message (with no quotes)

%= <object> unspecified, but works with any object

%% none literal %

C H A P T E R 7

Conditions

112 Introspective Operations

when too many or too few format arguments are supplied is
implementation-defined.

The two-character sequence %% does not consume a format argument, but
inserts a % character.

All other uses of the % character in a format string are implementation-defined.

There is no standard way to get the message from a condition (although it can
be inserted into another message). Debuggers get the message using
implementation-dependent mechanisms. A streams library or other
implementation-dependent feature might include a function to get the message
from a condition. However, in some implementations, the message might only
exist in the debugger, not in the program runtime.

There is no standard way for a user-defined condition class to supply a
message. Individual implementations and libraries can specify such a
mechanism that is appropriate to their needs.

Introspective Operations 7

The function do-handlers allows introspection of all the dynamically active
handlers. For each handler, it provides the type, test, function, and
init-arguments that were declared when the handler was installed.
do-handlers is typically used by the debugger or other error-recovery
system to discover what restart handlers are available before signaling a restart.

Additional operations support introspection on conditions. See “Introspection
on Conditions” on page 351 for a complete description of these introspective
functions.

C H A P T E R 8

Contents

113

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 Collections

Overview 115
The Iteration Protocol 115

Collection Keys 116
Iteration Stability and Natural Order 116
Mutability 117
Collection Alteration and Allocation 117
Collection Alignment 118
Defining a New Collection Class 119
Tables 120
Element Types 122
Limited Collection Types 124

Creating Limited Collection Types 127

This document was created with FrameMaker 4.0.4

C H A P T E R 8

114

Contents

C H A P T E R 8

Overview

115

Collections 8

Overview 8

Collections are aggregate data structures which map from

keys

 to

elements

.
All collections are instances of the class

<collection>

.

<collection>

 has two covering subclasses: <sequence> and

<explicit-key-collection>

. Every concrete subclass of

<collection>

must also be a subclass of

<sequence>

 or

<explicit-key-collection>

.

Sequences

 use successive non-negative integers as keys;

explicit key
collections

 may use any object as a key. Both of these classes have predefined
subclasses and may be additionally subclassed by programmers. See
“Collections” on page 199 for a complete description of these classes.

A large number of functions are available on collections, including functions
for iteration, mapping, random access of elements, sorting, filtering, etc. See
“Collection Operations” on page 281 for a complete description of these
functions.

The Iteration Protocol 8

All collections implement an

iteration protocol

that allows iteration to be
specified abstractly. Many higher level operations on collections can be defined
in terms of only the iteration protocol. For many programs these higher level
operations are sufficient; they will not need to use the iteration protocol
directly. The iteration protocol is used by programs defining new collection
types, and for certain types of iteration that cannot be handled by the built-in
higher level operations.

The iteration protocol centers on the notion of a “state” object for an iteration.
Each collection class chooses its own most appropriate representation for an
iteration state, and only the functions of the iteration protocol are affected by
this choice.

Use of the iteration protocol is based on the assumption that the collection over
which iteration occurs remains static for the duration of the iteration. That is,
arbitrary changes to a mutable collection while an iteration is in progress may
cause the iteration to produce unpredictable results.

This document was created with FrameMaker 4.0.4

C H A P T E R 8

Collections

116

Collection Keys

With notable exceptions, two or more iterations over the same collection are not
guaranteed to produce the same values in the same order, even if the collection
is unaltered. For details, see “Iteration Stability and Natural Order” on
page 116.

The built-in collection functions are implemented in terms of the iteration
protocol. When defining a new collection class, a programmer need only
define the iteration protocol for the class. Once this is done, instances of the
class can be used with all the built-in collection functions. Of course, in some
cases it will be more efficient to define methods on these functions optimized
for the new class, rather than relying on the default implementation based on
the iteration protocol.

Collection Keys 8

All collections in Dylan are keyed. That is, all collections can be viewed
abstractly as partial functions that map keys to elements. (This choice
precludes pure sets from being considered collections, although it is
straightforward simply to ignore the keys for a collection and consider it
simply as a set of elements.) The

element

 function implements this partial
mapping of keys to elements.

Every collection has a

key test

, which is the test used for determining whether
a given key matches a key in the collection. The key test of a collection can be
accessed using the

key-test

 function.

Iteration Stability and Natural Order 8

A collection is

stable under iteration

 if any two iterations over the collection
are guaranteed to produce the same values in the same order in the absence of
modifications to the table. If this guarantee does not hold, the collection is

unstable under iteration

.

Sequences are required to be stable under iteration. Explicit key collections
may or may not be stable under iteration.

C H A P T E R 8

Collections

Mutability

117

The order in which elements and keys are enumerated by the iteration protocol
for a particular iteration is known as the

natural order

 for that iteration over
the collection. If a collection is stable under iteration, then every iteration over
that collection will have the same natural order, and we may speak of the
natural order of the collection itself. Most of the operations on collections are
required to operate in natural order, usually for the purpose of understanding
interactions among side effects.

Mutability 8

Some collections can be modified after they have been created while others
cannot. The

<mutable-collection>

 and

<stretchy-collection>

mixin classes are provided to allow methods to distinguish between mutable
and immutable collections. Instances of

<mutable-collection>

 can have
their elements changed after they are created. Instances of

<stretchy-collection>

 can have keys added and removed after they are
created.

An element of a mutable collection is set to a new value with

element-setter

. If the collection is not stretchy, than the key specified must
already be present in the collection; its value will be changed. If the collection
is stretchy, then the key will be added if it is not already present. If the
collection is a stretchy sequence and the key is not already present, then the
size of the sequence will first be set to the new key minus 1, and then the value
of the new key will be set.

A key and its corresponding value can be removed from an explicit key
collection with the function

remove-key!

.

Collection Alteration and Allocation 8

The contents of a collection are the key/value pairs stored in the collection.
The contents are said to be

altered

 when:

■

Keys are added or removed (according to the collection's key test).

■

The value of a key (according to the key test) changes (as tested by

==

).

C H A P T E R 8

Collections

118

Collection Alignment

■

The ordering of the key/value pairs changes. This type of alteration is only
possible for explicit key collections which are stable under iteration.

A function

destructively modifies

 its argument collection if calling the function
could alter the contents of the argument collection. Unless explicitly
documented to do so, functions do not destructively modify their arguments.

The

!

 convention, described on page 23, is used to indicate some destructive
operations.

Unless explicity noted, destructive operations are not required to leave their
arguments in a well-defined state. More particularly, a destructive operation
does not in general turn the argument into the result. It may reuse components
of the argument or alter the argument in some unpredictable way in order to
produce the result. As a general rule, the return value of the function should be
used.

A collection

C

is

fresh

 if modification of any pre-existing collection's contents
can never modify the contents of

C

 and if modifications to

C

 can never modify
the contents of any pre-existing collection. Immutable collections cannot be
modified, so a fresh immutable collection can share structure with other
immutable collections.

For example, given that

<pair>

 is mutable and the result of a call to

list

 is a
fresh instance of

<pair>

, we can guarantee that the following expression is
always false:

list(1) == list(1)

Collection Alignment 8

Some operations on collections are defined to allow the use of more than a
single collection. For example, some looping functions accept any number of
collections and operate on these collections in parallel. Each pass through the
loop uses one element from each collection. The presence of collections which
are unstable under iteration can create problems for multi-collection operations
unless special care is taken. If iteration is effectively performed in random
order, then naively performing parallel iterations over two different collections
would randomly combine values from the two collections. This would
presumably have no meaning.

C H A P T E R 8

Collections

Defining a New Collection Class

119

To prevent such random combinations, operations on more than one collection
must in general align the collections.

Collection alignment

 consists of
effectively computing the intersection of the collections’ key sequences and
then using the random-access operations (

element

 and

element-setter

) to
operate on the collections themselves.

If implemented naively, this definition of alignment has the potential for
extreme inefficiency because of its dependence on

element

 and the potential
loops implied by the calls to

key-sequence

. However, an important special
case of this problem is that of iterating over multiple sequences. In this case,
the intersection of key sequences will always be the non-negative integers up to
the length of the shortest sequence. Further, unlike collections in general,
sequences are required to exhibit stability so the explicit computation of key
sequences is not actually required. It is correct simply to iterate until one or
more of the sequences is exhausted.

Iteration operations that store results in a target collection must generally
include the the target collection during alignment. This alignment requirement
is relaxed if the target collection is a

<stretchy-collection>

. In this case,
the target collection is not considered during alignment. Rather, only the
source collections are aligned. New keys may be added to the target collection
during the course of the iteration, and keys may be given new values. Other
keys are left undisturbed.

It is only possible to align collections which have identical key tests.

Defining a New Collection Class 8

Every collection class must provide an implementation of the iteration
protocol. A method on

forward-iteration-protocol

 is required. A
method on

backward-iteration-protocol

 is optional.

Every collection must provide or inherit methods for

element

 and

key-test

. If the collection is also a

<mutable-collection>

, it must
provide or inherit a method for

element-setter

. A collection that is not a

<mutable-collection>

 must provide an implementation of

type-for-copy

.

C H A P T E R 8

Collections

120

Tables

Individual collection classes may impose further requirements on their
subclasses. For example, concrete subclasses of

<table>

 must provide or
inherit a method for

table-protocol

.

For efficiency, it may be desirable to provide specialized implementations for
certain generic functions. Collections that can implement functions such as

size

 or

member?

 more efficiently should do so. Sequences that can reuse
storage to implement functions such as

reverse!

 and

sort!

 should do so.

Tables 8

Tables map arbitrary keys to elements. Table keys may be any object, including
complex objects such as strings. All tables are instances of

<table>

.

<table>

is the only instantiable subclass of

<explicit-key-collection>

 defined
by Dylan. Tables are unstable under iteration.

The iteration protocol for tables is implemented in terms of the function

table-protocol. Every concrete subclass of <table> must provide or
inherit a method for table-protocol. This function accepts a table as an
argument, and returns an equivalence predicate and hash-function, as
described below.

The equivalence predicate of a table is used to compare keys. (It is the table’s
key-test.) The table maps keys that are equivalent under the predicate to the
same table element. An equivalence predicate is a boolean function of two
arguments that returns true if and only if the arguments are considered to be
the same according to some specified criteria. For a function to be used as an
equivalence predicate, it must be reflexive, commutative, and transitive. That
is, for a function F and any arguments X, Y, and Z in the domain of F, the
following must be true:

■ F(X,X) must be true.

■ F(X,Y) must be true if and only if F(Y,X) is true.

■ If both F(X,Y) and F(Y,Z) are true then F(X,Z) must be true.

An equivalence class (for an equivalence predicate) is a set of objects, or
potential objects, that are all the same under the specified equivalence

C H A P T E R 8

Collections

Tables 121

predicate and different from all objects not in the class. (This use of the term
“class” does not refer to Dylan classes.)

An object is said to be visibly modified with respect to an equivalence
predicate if the modification changes the equivalence class of the object. The
modifications that are visible to an equivalence predicate are determined by the
definition of the predicate. (For example, changing a character in a string
would be a visible modification with respect to an equivalence predicate that
compared strings character by character, but it would not be a visible
modification with respect to an equivalence predicate that compared objects by
identity, without regard for their contents.)

If an object X is a key in a table T and is visibly modified with regard to the test
function of T, then the consequences are unspecified if any of the following
objects are used as a key in any subsequent operations on T:

■ The original object, X.

■ Some object Y that is in the same equivalence class (as determined by the
test function) as X prior to the modification of X.

■ Some object Z that is in the same equivalence class (as determined by the
test function) as X after the modification of X.

Each table also has an associated hash function, which is a function that relates
table keys and table elements by computing hash codes. A hash code is a
conceptual object consisting of a hash id and its associated hash state. (It is not
an actual Dylan object.) A hash id is an integer encoding of an object. A hash
state is an object of implementation-dependent type which is associated with a
particular hash id and can be used by the implementation to determine
whether the hash id has been invalidated. A hash function accepts one
argument, a key, and returns two values, a hash id and a hash state, which
together represent the hash code.

Each hash function is associated with a specific equivalence predicate, and
must obey the following constraints:

■ The domain of the hash function must include the domain of valid
arguments to the corresponding equivalence predicate. A hash function
need not be defined for all Dylan objects, only those which are acceptable as
arguments to the equivalence predicate.

■ All objects in a given equivalence class have the same (=) valid hash id,
where validity is determined from the associated hash state.

C H A P T E R 8

Collections

122 Element Types

In addition, a hash function should have the property that the hash ids
computed by it are well distributed over the range of possible values. That is,
it should be unlikely that two randomly chosen equivalence classes have the
same valid hash id.

Element Types 8

Each instance X of <collection> has a conceptual element type which is an
instance of <type>. If the element type of X is T, X stores elements of type T.
The element method will always return an instance of T and the
element-setter method (if X is mutable) will accept any instance of T. The
analogous functions returned by the iteration protocol also return/accept any
instance of T.

Each subclass C of <collection> has a conceptual element type which is
either T1 or indefinite ⇐ T1, where T1 is a type. (The symbol “⇐ “ in the
“indefinite ⇐ T1” notation is an abbreviation for “subtype.”)

If the element type of C is T1, each general instance of C must have an element
type T2 that is type equivalent to T1. Each subclass of C must have an element
type T3 that is type equivalent to T1.

If the element type of C is indefinite ⇐ T1, each general instance of C must have
an element type T2 that is a subtype of T1. Therefore element on that instance
will return an instance of T1 (and will not return all possible instances of T1 if
T2 is a proper subtype of T1). It is not determined by C what the applicable
element-setter method will accept (thus C's element type is said to be
"indefinite"). Each subclass of C must have element type T3 or indefinite ⇐ T3,
where T3 is a subtype of T1.

User-defined collection classes must also follow these rules.

C H A P T E R 8

Collections

Element Types 123

Note: the above statements about the value returned by element only apply
when no default: keyword argument is specified.

Table 8-1 Element Types of Built-in Collections

Collection Element Type

<collection> indefinite ⇐ <object>

<explicit-key-collection> indefinite ⇐ <object>

<mutable-collection> indefinite ⇐ <object>

<stretchy-collection> indefinite ⇐ <object>

<sequence> indefinite ⇐ <object>

<mutable-explicit-key-collection> indefinite ⇐ <object>

<mutable-sequence> indefinite ⇐ <object>

<table> indefinite ⇐ <object>

<object-table> indefinite ⇐ <object>

<array> indefinite ⇐ <object>

<vector> indefinite ⇐ <object>

<simple-vector> indefinite ⇐ <object>

<stretchy-vector> indefinite ⇐ <object>

<deque> indefinite ⇐ <object>

<string> indefinite ⇐ <character>

<range> indefinite ⇐ <real>

<simple-object-vector> <object>

<unicode-string> K1 (see note below)

<byte-string> K2 (see note below)

<list> <object>

<pair> <object>

<empty-list> <object>

C H A P T E R 8

Collections

124 Limited Collection Types

Note: K1 and K2 are subtypes of <character> that have not been given
standardized names.

By convention, if C is an instantiable subtype of <collection> and C's
element-type is indefinite ⇐ <object>, then instantiating C produces a
collection whose element type is <object>.

Instantiating <range> produces a collection whose element-type is
unspecified except that it is a subtype of <real> and every element of the
range is an instance of the element type.

The preceding section describes the element type of every object that is created
by make of an instantiable built-in collection class. The element type of an
instance of a user-defined collection class is unspecified, but should follow the
rules given here in order to preserve the property that any operation that
works on an instance of a supertype must work on an instance of a subtype.

Limited Collection Types 8

Limited collections are subtypes of <collection> which are constrained to
have a particular size or dimensions and which are constrained to hold
elements of a particular type.

If C is a subclass of <collection> whose element type is indefinite ⇐ T1,
then it is possible to create any number of limited collection types which can be
described as limited(C, of: T2, size: S).

Like a collection class, a limited collection type has a conceptual element type.
The element type of limited(C, of: T2, size: S) is T2. T2 must be an
instance of <type> and a subtype of T1. C is the base class of the new limited
collection type.

S limits the size of instances of a limited collection type. S can be #f, which
means no limitation, or a non-negative integer, which means that every
instance of the limited collection type has exactly that many elements.

S must be #f if C is stretchy (e.g. <table>, <stretchy-vector>, or
<deque>).

If C is <array> then it is also possible to create any number of limited
collection types which can be described as limited(<array>, of: T,
dimensions: D). D must be a sequence of non-negative integers; the rank of

C H A P T E R 8

Collections

Limited Collection Types 125

each instance is size(D) and the dimensions of each instance are the elements
of D. You cannot specify both size: and dimensions: in the same type.

Some limited collection types are instantiable. make(limited(C, …), …)
returns a direct instance of some subclass of C. Typically this class is not
standardized and its name is not exported, but it is valid for this class to be C
itself. There is nothing special about this class; it is simply a class known to the
applicable limited method and its creation is subject to all the usual sealing
restrictions.

An object X is an instance of a limited collection type limited(C, of: T2,
size: S) if and only if all of the following are true:

■ object-class(X) is a subclass of C.

■ X's size matches S, as described above.

■ If X is an instance of <stretchy-collection> then S must be #f.

■ The element type of X is equivalent to T2.

An object X is an instance of a type limited(C, of: T2, dimensions:
D) if and only if all of the following are true:

■ object-class(X) is a subclass of C.

■ dimensions(X) = D.

■ X is not an instance of <stretchy-collection>.

■ The element type of X is equivalent to T2.

Each element of an instance of a limited collection type must be an instance of
the element type. Fetching an element of the collection is guaranteed to return
an instance of the element type. Setting or initializing an element will check
that the new element is an instance of the element type and signal an error of
type <type-error> if it is not.

If L1 is a subtype of L2 and L2 is a limited collection type, then L1 is either a
singleton of an instance of L2 or a limited collection type that satisfies one of the
following sets of rules:

1. If neither L1 nor L2 specifies a dimensions: attribute, let L1 be
limited(C1, of: T1, size: S1), and L2 be limited(C2, of: T2,
size: S2). All of the following must be true:

n C1 is a subclass of C2.

n If S2 is not #f, S1 = S2.

C H A P T E R 8

Collections

126 Limited Collection Types

n T1 and T2 are equivalent types.

2. If either L1 or L2, specifies a dimensions: attribute, then all of the
following must be true. Let L1 be limited(C1, of: T1, dimensions:
D1), and L2 be either limited(C2, of: T2, dimensions: D2) or
limited(C2, of: T2, size: S2).

n C1 is a subclass of C2.

n D1 is present (i.e. L1 must specify a dimensions attribute)

n If D2 is present, D1 = D2.

n If S2 is not #f, reduce1(*, D1) = S2.

n T1 and T2 are equivalent types

The limited collection type limited(C, of: T, size: S) is a subtype of
C. The limited collection type limited(C, of: T, dimensions: D) is a
subtype of C.

Element Type Subclassing 8

The element-type subclassing rules are generalized to limited collection types
as follows (this is implied by the preceding and is included here for
explanatory purposes only):

If the element type of a limited collection type L1 is T1, each instance of L1
stores elements of type T1. The element method will always return an
instance of T1 and the element-setter method will accept any instance of
T1. Each limited collection type that is a subtype of L1 must have an element
type T2 that is equivalent to T1.

If the element type of a class C1 is indefinite ⇐ T1, each limited collection type
that is a subtype of C1 has an element type T2 and T2 must be a subtype of T1.
Thus element on any instance of C1 will return an instance of T1 (and will not
return all possible instances of T1 if T2 is a proper subtype of T1), and it is not
determined by C1 what the applicable element-setter method will accept
(hence the term “indefinite”).

The above statements about the value returned by element only apply when
no default: keyword argument is specified.

C H A P T E R 8

Collections

Limited Collection Types 127

Creating Limited Collection Types 8

You obtain a type object for a limited collection type by calling the limited
generic function on a collection class. There are several built-in methods for
limited specialized for specific subclasses of <collection>. Each of these
methods accepts a required keyword argument of: and also accepts an
optional keyword argument size: if the class is not stretchy. If the class is
<array> the optional keyword argument dimensions: is also accepted. Each
method returns a type. The returned type is never a class. If the size:
keyword argument is accepted but not supplied, it defaults to #f.

Users cannot write portable methods for limited. There are no built-in
methods for limited applicable to user-defined classes.

Uninstantiable Limited Collection Types 8

Methods on limited support the creation of uninstantiable limited types for
the following classes:

■ <collection>

■ <explicit-key-collection>

■ <mutable-collection>

■ <stretchy-collection>

■ <mutable-explicit-key-collection>

■ <sequence>

■ <mutable-sequence>

While limited types created from these classes cannot be instantiated, they are
still useful as specializers.

Instantiable Limited Collection Types 8

Methods on limited support the creation of instantiable limited types for the
following classes:

■ <table>

■ <object-table>

C H A P T E R 8

Collections

128 Limited Collection Types

■ <array>

■ <vector>

■ <simple-vector>

■ <stretchy-vector>

■ <string>

■ <range>

These methods are are described in Chapter 12, “The Built-In Functions,” on
page 251.

C H A P T E R 9

Contents

129

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Sealing

Overview 131
Explicitly Known Objects 131
Declaring Characteristics of Classes 132
Declaring Characteristics of Generic Functions 133
Define Inert Domain 133

Rationale 134
Pseudosubtype Examples 136
Abbreviations for Define Inert Domain 136
Implied Restrictions on Method Definitions 137

This document was created with FrameMaker 4.0.4

C H A P T E R 9

130

Contents

C H A P T E R 9

Overview

131

Sealing 9

Overview 9

This chapter describes techniques for

sealing

 portions of a Dylan program by
declaring that classes or functions will never be used in particular ways, or will
never be extended in particular ways. These

sealing directives

 enable a range
of compiler optimizations, and also clarify the programmer’s intent.

The sealing directives include:

■

Declaring a class to be

sealed

 or

open

. This controls whether a class can
be directly subclassed outside the library in which it is defined.

■

Declaring a class to be

abstract

 or

concrete

. This controls whether a
class can have direct instances.

■

Declaring a class to be

primary

 or

free

. This controls how a class can be
used for multiple inheritance.

■

Declaring a generic function to be

sealed

 or

open

. This controls whether
methods can be added to the generic function from outside the library in
which the generic function is defined.

■

Using

define inert domain

, or using the abbreviations

define
inert method

 and

inert slot

. These disallow the addition of some
methods from outside the library in which the generic function is defined.

With the exception of

define inert domain

, these directives are expressed
as adjectives on the generic function definition, class definition, method
definition, or slot specification.

Explicitly Known Objects 9

A class, generic function, or method may or may not be

explicitly known

 to a
given library. A sealing restriction may limit the set of classes, generic
functions, and methods to those which are explicitly known; others cannot be
added.

■

A class

C

 is explicitly known in a library

L

 if it is defined by

define
class

 in

L

 or in a library used by

L

.

This document was created with FrameMaker 4.0.4

C H A P T E R 9

Sealing

132

Declaring Characteristics of Classes

■

A generic function

G

 is explicitly known in a library

L

 if

G

 is defined by

define generic

 in the library or in one of the libraries

L

 uses, or if

G

 is
implicitly defined by the definition of a method explicitly known in

L

 or if

G

is implicitly defined by a slot specification for a class explicitly known in

L

.

■

A method

M

 is explicitly known in a library

L

 if

M

 is defined by

define
method

 in

L

 or in one of the libraries

L

 uses, or if

M

 is defined by a slot
specification for a class explicitly known in

L

.

Declaring Characteristics of Classes 9

A class definition may include the adjectives

sealed

,

open

,

primary

,

free

,

abstract

, or

concrete

. These adjectives declare characteristics of the class.

Additional restrictions on the ability to subclass classes may be imposed by

define inert domain

.

■

An explicitly defined class can be declared to be either sealed or open. If a
class is sealed then no additional direct subclasses other than those explicitly
known in the same library may be created. Thus, it is an error to define a
direct subclass of a sealed class in some library other than the one which
defined the sealed class, or to use

make

 of

<class>

 with a sealed class
included in the direct superclasses specified by the

superclasses:

initialization argument. An open class does not prohibit such operations.
When explicitly defining a class, the default is for the class to be sealed. This
may be overriden by explicitly specifying that it is open. A class created
using

make

 of

<class>

 is open. There is no specified way to create a sealed
class using

make

.

■

An explicitly defined class may be declared to be either primary or free. The
default is free. It is illegal for a class to have more than one primary
superclass unless each is a subclass of another. Slots defined in a primary
class may be accessed more efficiently than slots defined in a free class.

■

An explicitly defined class may be defined to be either abstract or concrete.
The default is concrete. The superclasses of an abstract class must be
abstract. The default method on

<make>

 will signal an error if passed an
abstract class. For an abstract class to be instantiable, it must define a
method on

make

 which delegates to a concrete subclass.

C H A P T E R 9

Sealing

Declaring Characteristics of Generic Functions

133

Declaring Characteristics of Generic Functions 9

A generic function definition may include either the adjective

sealed

 or the
adjective

open

. These adjectives declare whether the generic function is sealed.

If a generic function is sealed then no additional methods other than those
explicitly known in the same library may be added to the generic function.
Thus, it is an error to define a method for a sealed generic function in some
library other than the one which defined the sealed generic function, or to
apply

add-method

 or

remove-method

 to a sealed generic function. An open
generic function does not prohibit these operations.

When explicitly defining a generic function, the default is for the generic
function to be sealed. It can be declared to be open by using the

open

 adjective
in the generic function definition. A generic function that has no explicit
definition but has an implicit definition provided by explicit definitions of
generic function methods or slot accessors is also sealed. A generic function
created using

make

 of

<generic-function>

 is open. There is no specified
way to create a sealed generic function using

make.

Additional restrictions on the ability to add methods to a generic function may
be imposed by

define inert domain

.

Define Inert Domain 9

define inert domain

 is used to make specific portions of a generic
function and of the class hierarchy invariant without disallowing all future
changes. The arguments to

define inert domain

 are an explicitly known
generic function and a series of types, one for each required argument of the
generic function.

The complete syntax of

define

inert domain is given on page 376.

A define inert domain definition in a library L for a generic function G
with types T1…Tn imposes the following constraints on programs:

C H A P T E R 9

Sealing

134 Define Inert Domain

1. A method M which is congruent to G and which is not an explicitly known
method in L may be added to G only if at least one of the specializers for M
is disjoint from the corresponding T.

2. A method M may be removed from G only if at least one of the specializers
for M is disjoint from the corresponding T.

3. A class C (with direct superclasses D1…Dm) which is not explicitly known in
L may be created only if no method in G actually blocks C.

n A method M (with specializers S1…Sn) in G potentially blocks C at
argument position i if there exist j and k such that Dj is a pseudosubtype
of Si, Dk is a pseudosubtype of Ti, and Dk is not a pseudosubtype of Si.

n A method M actually blocks C if M potentially blocks C at some argument
position, and for every argument position i where Si and Ti are disjoint, M
potentially blocks C at i.

The third constraint is illustrated by the following example:

define generic m (x);

define class <t> (<object>) end class <t>;

define class <s> (<object>) end class <s>;

define method m (s :: <s>) end method m;

define inert domain m (<t>);

define class <c> (<s>, <t>) end class <c>;

The definition of class <c> would be valid if it appeared in the same library as
the preceding definitions or in a library used by them, but invalid if it appeared
in a different library. The reason is that without the definition of <c>, the
method defined on m is not within the domain declared by the define
inert domain, but with the definition of <c> the method is within that
domain.

Rationale 9

define inert domain permits the compiler to assume certain properties of
the program which can be computed based on explicitly known classes and
methods, with a guarantee that an attempt to violate any of those assumptions
will be detected.

C H A P T E R 9

Sealing

Define Inert Domain 135

The goal of rule 3 is that the creation of the class C must not make any method
M applicable to a part of the inert domain to which it was not previously
applicable.

The “potentially blocks” concept describes the mechanism for testing whether
the set of objects that are instances of both Si and Ti (i.e. to which the method is
applicable at the ith argument position and that are within the inert domain at
that argument position) would change as a result of creating C. By specifying
what valid programs are allowed to do, rule 3 implicitly specifies the
assumptions a compiler can make. A define inert domain definition
accomplishes this by permitting the compiler to eliminate some of the known
methods on a generic function from the set of methods that might be applicable
to a particular call at runtime. For example, if this leaves exactly one applicable
method, the compiler can eliminate a run-time method dispatch and consider
additional optimizations such as inlining.

Specifically, suppose the compiler is compiling a call to G and has determined
that the argument at position i is an instance of some type U (where U is not
necessarily a standard Dylan type, but could instead be a compiler-internal
extension to the type system, such as a difference of two types). For the
compiler to be able to rely on the define inert domain definition, U must
be a subtype of Ti. For the compiler to determine that M is not applicable, U
must be disjoint with Si. Creating C can't change whether U is a subtype of Ti,
but it can change whether U is disjoint with Si. If there could be an object that
is simultaneously an instance of U, C, and Si, it would violate the compiler's
assumption that M is not applicable in the call to G, and therefore creating C
would be a sealing violation. If there can't be such an object, then creating C is
allowed.

This maps onto rule 3 as follows (ignoring for the moment the added
complication of limited types that lead to the use of the pseudosubtype
relationship rather than subtype):

U is a subtype of Dk and therefore is a subtype of Ti, because subtype is
transitive.

Dk is not a subtype of Si, because if it were then U could not be disjoint from Si.

Dj is a subtype of Si.

If U and C would have a non-empty intersection, then the creation of C must be
prevented, else U would no longer be disjoint from Si. One possible U is the set
of all general instances of Dk that are not also general instances of any of the
explicitly known direct subclasses of Dk. That U would indeed have a

C H A P T E R 9

Sealing

136 Define Inert Domain

non-empty intersection with C. The existence of this U makes the proposed
rule 3 necessary.

Rule 3 does not need to address the possibility of multiple inheritance being
used to combine classes involved in the element types of limited collection
classes. Changes to the disjointness relationships between element types does
not affect the relationships between collection types with those element types.

Pseudosubtype Examples 9

Suppose A and B are disjoint subclasses of <collection>, Si is limited(A,
of: T), and Ti is limited(B, of: T). Thus, Si and Ti are disjoint and M is
outside the inert domain. If C inherits from A and B it should be potentially
blocked by M, because an instance of limited(C, of: T) would be an
instance of both Si and Ti. Since B is not a subtype of Ti, there would be no
blockage if the constraints in rule 3 were defined in terms of subtype.
However, B is a pseudosubtype of Ti, so specifying rule 3 using the
pseudosubtype relationship correctly causes M to potentially block C.

Suppose Si is limited(<stretchy-vector>, of: <integer>) and Ti is
limited(<sequence>, of: <integer>). Attempt to create
<stretchy-string>, a direct subclass of <stretchy-vector> and
<string>. The element-type of <stretchy-string> must be a subtype of
<character>, therefore, assuming <integer> and <character> are
disjoint, <stretchy-string> is disjoint from both Si and Ti, and so is not
blocked. This example shows the need for the non-disjointness requirement in
the definition of pseudosubtype.

Abbreviations for Define Inert Domain 9

define inert method defines a method on a generic function and also seals
the generic function for the types that are the specializers of the method.

The following two program fragments are equivalent:

define inert method insert (source :: <list>, i :: <object>)
 => (result :: <list>)
 …
end method insert;

and

C H A P T E R 9

Sealing

Define Inert Domain 137

define method insert (source :: <list>, i :: <object>)

 => (result :: <list>)

 …

end method insert;

define inert domain insert (<list>, <object>);

The inert slot option to define class defines a slot and also makes the
getter generic function inert over the class, and the setter generic function, if
there is one, inert over the type of the slot and the class.

The following two program fragments are equivalent:

define class <polygon> (<shape>)

 inert slot sides :: <integer>, required-init-keyword: sides:;

end class <polygon>;

and

define class <polygon> (<shape>)

 slot sides :: <integer>, required-init-keyword: sides:;

end class <polygon>;

define inert domain sides (<polygon>);

define inert domain sides-setter (<polygon>, <integer>);

Implied Restrictions on Method Definitions 9

To avoid potential sealing violations among separately developed libraries, one
of the following conditions should be true for every method M defined in a
library L:

■ Either the generic function to which M is added should be defined in the
library L, or

■ One of the specializers of M should be a subtype of a type defined in library
L.

The following example illustrates why this condition is necessary.

Library L1 defines and exports the following:

C H A P T E R 9

Sealing

138 Define Inert Domain

define generic g (x)

define class <c1> (<object>) end class <c1>;

Library L2 uses L1 and defines the following

define class <c2> (<c1>) end class <c2>;

define method g (x :: <c2>) end method;

define inert domain g (<c2>)

Library L3 uses L1 and defines the following

define method g (x :: <c>) end method;

Libraries L2 and L3 are developed independently, and have no knowledge of
each other. An application that attempts to use both L2 and L3 contains a
sealing violation. L2 is clearly valid. Therefore, L3 is at fault for the sealing
violation. Because the compiler cannot prove that use of L3 will lead to an error
(and indeed, it will only lead to an error in the presence of L2), it is appropriate
to issue a warning but not disallow the compilation of L3.

C H A P T E R 1 0

Contents

139

Contents

Figure 10-0
Listing 10-0
Table 10-0

10 Macros

Overview 141
Compilation and Macro Processing 141

Extensible Grammar 144
Definition Macros 144
Statement Macros 145
Function Macros 145

Macro Names 146
Rewrite Rules 147
Patterns 148

Special Rules for Definitions 153
Special Rules for Statements 153
Special Rules for Function Macros 154

Pattern Variable Constraints 154
Intermediate Words 156

Templates 156
Auxiliary Rule Sets 158
Hygiene 159

Intentional Hygiene Violation 160
Hygiene Versus Module Encapsulation 160

Rewrite Rule Examples 161
Statement Macros 161
Definition Macros 170
Additional Examples 173

This document was created with FrameMaker 4.0.4

C H A P T E R 1 0

140

Contents

C H A P T E R 1 0

Overview

141

Macros 10

Overview 10

A

macro

 is an extension to the core language that can be defined by the user, by
the implementation, or as part of the Dylan language specification. Much of
the grammatical structure of Dylan is built with macros. A macro defines the
meaning of one construct in terms of another construct. The compiler
substitutes the new construct for the original. The purpose of macros is to
allow programmers to extend the Dylan language, for example by creating new
control structures or new definitions. Unlike C, Dylan does not intend macros
to be used to optimize code by inlining. Other parts of the language, such as
sealing and

define constant

, address that need.

Throughout this chapter,

italic font

 and

SMALL

CAPS

 are used to indicate
references to the formal grammar given in Appendix A, “BNF.”

Compilation and Macro Processing 10

Compilation consists of six conceptual phases:

1. Parsing a stream of characters into tokens, according to the lexical grammar
in Appendix A, “BNF.”

2. Parsing a stream of tokens into a program, according to the phrase grammar
in Appendix A, “BNF.”

3. Macro expansion, which translates the program to a core language.

4. Definition processing, which recognizes special and built-in definitions and
builds a compile-time model of the static structure of the program.

5. Optimization, which rewrites the program for improved performance.

6. Code generation, which translates the program to executable form.

Portions of a program can be macro calls. Macro expansion replaces a macro
call with another construct, which can itself be a macro call or contain macro
calls. This expansion process repeats until there are no macro calls remaining
in the program, thus macros have no space or speed cost at run time. Of
course, expanding macros affects the speed and space cost of compilation.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 0

Macros

142

Overview

A macro definition describes both the syntax of a macro call and the process for
creating a new construct to replace the macro call. Typically the new construct
contains portions of the old one, which can be regarded as arguments to the
macro. A macro definition consists of a sequence of rewrite rules. The
left-hand side of each rule is a pattern that matches a macro call. The
right-hand side is a template for the expansion of a matching call. Pattern
variables appearing in the left-hand side act as names for macro arguments.
Pattern variables appearing in the right-hand side substitute arguments into
the expansion. Macro arguments can be constrained to match specified
elements of the Dylan grammar. Auxiliary rule sets enhance the rewrite rule
notation with named subrules.

Some implementations and a future version of the Dylan language
specification might allow macro expansions to be produced by compile-time
computation using the full Dylan language and an object-oriented
representation for programs. Such a “procedural macro” facility is not part of
Dylan at this time.

The input to, and output from, macro expansion is a fragment, which is a
sequence of elementary fragments. An elementary fragment is one of the
following:

■

A token: the output of the lexical grammar. The bracket tokens

(

,

)

,

[

,

]

,

{

,

}

,

#(

, and

#[

 are not allowed. Core reserved words (except

otherwise

),

BEGIN

-

WORDS

, and

FUNCTION

-

WORDS

 are not allowed unless quoted with
backslash.

■

A bracketed fragment: balanced brackets (

()

,

[]

, or

{}

) enclosing a
fragment.

■

A macro call fragment: a macro call.

■

A parsed fragment: a single unit that is not decomposable into its
component tokens. It has been fully parsed by the phrase grammar. A
parsed fragment is either an expression, a definition, or a local declaration.

The second and third phases of compilation (parsing and macro expansion) are
interleaved, not sequential. The parsing phase of the compiler parses a macro
call just enough to find its end. See

definition-macro-call, statement,
function-macro-call, body-fragment, list-fragment,

and

 basic-fragment

 in Appendix
A, “BNF.” This process of parsing a macro call also parses any macro calls
nested inside it. The result is a macro call fragment.

C H A P T E R 1 0

Macros

Overview

143

This loose grammar for macro calls gives users a lot of flexibility to choose the
grammar that their macros will accept. For example, the grammar of macro
calls doesn't care whether a bracketed fragment will be interpreted as an
argument list, a parameter list, a set of

for

 clauses, or a module import list.

The compiler can compute the expansion of a macro call fragment immediately,
or delay computing it until it is needed. When the compiler computes the
expansion of a macro call fragment, it obeys the macro's definition. Constraints
on pattern variables can cause reparsing of portions of the macro call.

A

constituent

,

operand

, or

leaf

 that is a macro call expands the macro some time
before the definition processing and optimization phases. The compiler
brackets the expansion in

begin

 …

end

, using the standard binding of

begin

in the Dylan module, and then reparses it as a

statement

. This reparsing may
discover more macro calls. A parse error while reparsing a macro expansion
could indicate an invalid macro definition or an incorrect call to the macro that
was not detected during pattern matching. Once the cycle of macro expansion
and reparsing has been completed, no tokens, bracketed fragments, or macro
call fragments remain and the entire source record has become one parsed
fragment.

This

begin

 …

end

 bracketing ensures that the expansion of a macro call will
not be broken apart by operator precedence rules when the macro call is a
subexpression. Similarly it ensures that the scopes of local declarations
introduced by a macro will not extend outside that macro expansion when the
macro call is a statement in a body.

The fragment produced by parsing a macro call, which is the input to macro
expansion, looks like this:

■

Local declarations and special definitions are parsed fragments.

■

Calls to macros are macro call fragments.

■

List constants and vector constants are parsed expression fragments.

■

Anything in brackets is a bracketed fragment.

■

If the macro call was not the result of macro expansion, everything else is
represented as sequences of tokens. There are a few restrictions on the
tokens, for example semicolons must appear in certain places and bare
brackets cannot appear; for details see the definition of

body-fragment

 and

list-fragment

 in Appendix A, “BNF.”

C H A P T E R 1 0

Macros

144

Extensible Grammar

■

In a macro call that is the result of macro expansion, additional items can be
parsed fragments, due to pattern-variable substitution.

■

Many built-in macros expand into implementation-specific parsed
fragments.

The parser recognizes parsed fragments as well as raw tokens. The
nonterminals

expression,

definition,

 and

local-declaration

 in the phrase grammar
accept parsed fragments of the same kind. The nonterminal

constant

 accepts
parsed expression fragments that are constants. The nonterminals

ORDINARY

-

NAME

 and

NAME

 accept parsed expression fragments that are named
value references. The nonterminal

operand

 accepts all parsed expression
fragments. The nonterminals

macro

,

definition-macro-call

,

statement

, and

function-macro-call

 accept macro call fragments.

Extensible Grammar 10

There are three kinds of macros: definition macros, which extend the available
set of definitions; statement macros, which extend the available set of
statements; and function macros, which syntactically resemble function calls
but are more flexible. Named value references and local declarations cannot be
macro calls. Only statements, function calls, and definitions are extensible.

Definition Macros 10

A definition macro extends the

definition-macro-call

production of the Dylan
phrase grammar to recognize additional constructs as valid definitions, by
creating a new

DEFINE

-

BODY

-

WORD

that is recognized by the following grammar
line:

definition-macro-call:

 define

 modifiers

opt

DEFINE

-

BODY

-

WORD

 body-fragment

opt

definition-tail

or by creating a new

DEFINE

-

LIST

-

WORD

that is recognized by the following
grammar line:

definition-macro-call:

define

 modifiers

opt

DEFINE

-

LIST

-

WORD

 list-fragment

opt

C H A P T E R 1 0

Macros

Extensible Grammar

145

This allows programmers to extend Dylan by defining new kinds of
definitions. The syntax of the definition must be parseable by one of these two
predefined grammar rules. The first handles body-style definitions like

define class

,

define method

, and

define module

, while the second
handles list-style definitions like

define constant

. See Appendix A, “BNF,”
for the details.

The new

DEFINE

-BODY-WORD or DEFINE-LIST-WORD becomes a partially
reserved word in each module where the macro definition is visible. In
particular a DEFINE-BODY-WORD or DEFINE-LIST-WORD cannot be used as a
modifier in a definition. It can still be used as a variable-name.

Statement Macros 10

A statement macro extends the statement production of the Dylan phrase
grammar to recognize additional constructs as valid statements, by creating a
new BEGIN-WORD that is recognized by the following grammar line:

statement:
 BEGIN-WORD body-fragmentopt end-clause

The new BEGIN-WORD becomes a reserved word in each module where the
macro definition is visible. It can only be used at the beginning and end of this
new statement.

Function Macros 10

A function macro extends the function-macro-call production of the Dylan
phrase grammar to recognize additional constructs, by creating a new
FUNCTION-WORD that is recognized by the following two grammar lines:

function-macro-call:
 FUNCTION-WORD (body-fragmentopt)
 FUNCTION-WORD (body-fragmentopt) := expression

The new FUNCTION-WORD becomes a reserved word in each module where the
macro definition is visible. It can only be used at the beginning of a macro call.

A function-macro-call containing an assignment operator,

FUNCTION-WORD (body-fragmentopt) := expression

C H A P T E R 1 0

Macros

146 Macro Names

becomes

begin let temp = expression ;
FUNCTION-WORD-setter (temp, body-fragmentopt);

temp

end

where FUNCTION-WORD-setter is FUNCTION-WORD with a “-setter” suffix
and temp is a unique name. If the body-fragment is missing then the comma
preceding it is omitted. Assignment does not expand a macro call on the
left-hand side.

To simplify its presentation, the grammar in Appendix A, “BNF,” is
ambiguous. A function-macro-call containing an assignment operator could
also be parsed as an expression consisting of the first form of
function-macro-call, followed by := and further binary-operands and
BINARY-OPERATORS. This alternative parse is disallowed.

Macro Names 10

A macro is named by a constant module binding. The macro is available to be
called in any scope where this binding is accessible. Macro names can be
exported and can be renamed during module importing just like any other
module binding. Macro bindings are constant and cannot be changed by the
assignment operator :=.

The name bound to a definition macro is the macro’s DEFINE-BODY-WORD or
DEFINE-LIST-WORD suffixed by “-definer”. This suffixing convention is
analogous to the naming convention for setters and allows the
DEFINE-BODY-WORD or DEFINE-LIST-WORD to be used for another purpose. The
name bound to a statement macro is the macro's BEGIN-WORD. The name
bound to a function macro is the macro's FUNCTION-WORD.

A named value reference is not allowed when the value of the binding is a
macro, because macros are not run-time objects.

A macro cannot be named by a local binding. Macro definitions are always
scoped to modules.

C H A P T E R 1 0

Macros

Rewrite Rules 147

Attempting to create a local binding that shadows a binding to a macro is an
error.

Reserved words created by a macro definition are reserved in any module
where the binding that names the macro is accessible. In other modules, the
same words are ordinary names. Each module has an associated syntax table
which is used when parsing code associated with that module. The syntax
table controls the lexical analyzer's assignment of names to the
DEFINE-BODY-WORD, DEFINE-LIST-WORD, BEGIN-WORD, and FUNCTION-WORD
categories. Importing a macro into a module makes the same modifications to
that module's syntax table that would be made by defining that macro in the
module. If a definition macro is renamed when it is imported, the
DEFINE-BODY-WORD or DEFINE-LIST-WORD derives from the new name. If the
new name does end in “-definer”, the imported macro cannot be called.

A NAME or UNRESERVED-NAME in the lexical grammar can be a backslash ('\')
character followed by a word. This prevents the word from being recognized
as a reserved word during parsing, but does not change which binding the
word names. Quoting the name of a statement or function macro with a
backslash allows the name to be mentioned without calling the macro, for
example to export it from a module.

When a binding that names a macro is exported from a module that is exported
from a library, clients of that library can call the macro. Information derived
from the macro definition goes into the library export information part of the
library description.

Rewrite Rules 10

The grammar of a macro definition is define macro macro-definition. For
details see Appendix A, “BNF.”

If the optional NAME at the end of a macro-definition is present, it must be the
same NAME that appears at the beginning of the macro-definition.

The kind of macro being defined, and thus the Dylan grammar production that
this macro extends, is determined by which kind of rules appear in the macro’s
main-rule-set.

The NAME preceding the main-rule-set is the name of the binding whose value
is this macro. It must be consistent with each left-hand side of the

C H A P T E R 1 0

Macros

148 Patterns

main-rule-set. It can be any name, even a reserved word or backslash followed
by an operator. For statement and function macros this NAME must be the
same as the NAME that appears as the first token in each main-rule-set pattern.
For definition macros this NAME must be the same as the NAME in the
xxx-style-definition-rule with the suffix “-definer” added.

A NAME can belong to more than one of the lexical categories BEGIN-WORD,
FUNCTION-WORD, DEFINE-BODY-WORD, and DEFINE-LIST-WORD. A NAME cannot
belong to both BEGIN-WORD and FUNCTION-WORD. A NAME cannot belong to
both DEFINE-BODY-WORD and DEFINE-LIST-WORD.

For simplicity of documentation, the xxx-style-definition-rule productions are
written ambiguously. The NAME in the left-hand side of the rule must be the
NAME immediately following define macro with the “-definer” suffix
removed, not an arbitrary NAME, which would be ambiguous with modifier.

The general idea is that the main-rule-set is an ordered sequence of rewrite
rules. Macro expansion tests the macro call against each left-hand side in turn
until one matches. The corresponding right-hand side supplies the new
construct to replace the macro call. The left- and right-hand sides can contain
pattern variables. The portion of the macro call that matches a particular
pattern variable on the left replaces each occurrence of that pattern variable on
the right. It is an error for the right-hand side of a rule to contain a pattern
variable that does not appear on the left-hand side of the same rule.

If none of the left-hand sides match, the macro call is invalid. If more than one
left-hand side matches, the first matching rule is used.

The punctuation marks ?, ??, and ?= used in patterns and templates are
customarily written without any whitespace following them.

Patterns 10

Approximately speaking, a pattern looks like the construct that it matches, but
contains pattern variables that bind to portions of the construct. Hence a
left-hand side in the main-rule-set looks like a macro call. However, the
grammar of patterns is not the same as the grammar of programs, but contains
just what is required to match the portions of the Dylan grammar that are
extensible by macros. Patterns have a simple nested grammar, with

C H A P T E R 1 0

Macros

Patterns 149

semicolons, commas, and brackets used to indicate levels of nesting. See the
definition of pattern in Appendix A, “BNF.”

A pattern matches a fragment (a sequence of elementary fragments) by
executing the following algorithm from left to right. It is easy to create patterns
that are ambiguous when considered as grammars. This ambiguity is resolved
by the left to right processing order and the specified try-shortest-first order for
matching wildcards. Pattern matching succeeds only if all sub-patterns match.
If pattern matching fails, the current rule fails and control passes to the next
rule in the current rule set. If all patterns in a rule set fail to match, the macro
call is invalid.

Multiple occurrences of the same pattern variable name in a single rule's
left-hand side are not valid.

A pattern matches a fragment as follows:

■ If the pattern consists of just one pattern-list, go to the next step. Otherwise
divide the pattern into subpatterns and the fragment into subfragments at
semicolons, and match subpatterns to subfragments individually in order.
The subpatterns and subfragments do not include the semicolons that
separate them. Suppose the pattern consists of N + 1 pattern-lists separated
by N semicolons. Locate the first N semicolons in the fragment (without
looking inside of elementary fragments) and divide up the fragment into
subfragments accordingly. The match fails if the fragment contains fewer
than N - 1 semicolons. As a special case, if the fragment contains N - 1
semicolons, the match still succeeds and the last subfragment is empty. If
the fragment contains more than N semicolons, the extra semicolons will be
in the last subfragment.

A pattern-list matches a fragment as follows:

■ If the pattern-list consists of just a pattern-sequence, go to the next step. If
the pattern-list consists of just a property-list-pattern, go to that step.
Otherwise divide the pattern-list into subpatterns and the fragment into
subfragments at commas, and match subpatterns to subfragments
individually in order. The subpatterns and subfragments do not include the
commas that separate them. Suppose the pattern consists of N + 1
subpatterns separated by N commas. Locate the first N commas in the
fragment (without looking inside of elementary fragments) and divide up
the fragment into subfragments accordingly. The match fails if the fragment
contains fewer than N - 1 commas. As a special case, if the fragment contains
N - 1 commas, the match still succeeds and the last subfragment is empty. If

C H A P T E R 1 0

Macros

150 Patterns

the fragment contains more than N commas, the extra commas will be in the
last subfragment. Note that the subdivision algorithms for commas and
semicolons are identical.

A pattern-sequence matches a fragment as follows:

■ Consider each simple-pattern in the pattern-sequence in turn from left to
right. Each simple-pattern matches an initial subsequence of the fragment
and consumes that subsequence, or fails. The entire pattern match fails if
any simple-pattern fails, if the fragment is empty and the simple-pattern
requires one or more elementary fragments, or if the fragment is not entirely
consumed after all simple-patterns have been matched. There is a special
backup and retry rule for wildcards, described below.

A simple-pattern matches a fragment as follows:

■ A NAME or => consumes one elementary fragment, which must be identical
to the simple-pattern. A NAME matches a name that is spelled the same,
independent of modules, lexical scoping issues, alphabetic case, and
backslash quoting. As a special case, after the word otherwise, an => is
optional in both the pattern and the fragment. Presence or absence of the
arrow in either place makes no difference to matching.

■ A bracketed-pattern matches and consumes a bracketed-fragment. If the
enclosed pattern is omitted, the enclosed body-fragment must be empty,
otherwise the enclosed pattern must match the enclosed body-fragment
(which can be empty). The type of brackets ((), [], or {}) in the
bracketed-fragment must be the same as the type of brackets in the
bracketed-pattern.

A binding-pattern matches a fragment as follows:

■ pattern-variable :: pattern-variable consumes as much of the fragment as
can be parsed by the grammar for variable. It matches the first
pattern-variable to the variable-name and the second to the type, a parsed
expression fragment. If no specializer is present, it matches the second
pattern-variable to a parsed expression fragment that is a named value
reference to <object> in the Dylan module. This matching checks the
constraints on the pattern variable, fails if the constraint is not satisfied, and
binds the pattern variable to the fragment.

■ pattern-variable = pattern-variable consumes as much of the fragment as can
be parsed by the grammar for variable = expression. It matches the first

C H A P T E R 1 0

Macros

Patterns 151

pattern-variable to the variable, a fragment, and the second to the expression,
a parsed expression fragment.

■ pattern-variable :: pattern-variable = pattern-variable consumes as much of
the fragment as can be parsed by the grammar for variable = expression. It
matches the first two pattern-variables the same as the first kind of
binding-pattern and it matches the third pattern-variable the same as the
second kind of binding-pattern.

A pattern-variable matches a fragment as follows:

■ When the constraint is a wildcard constraint (see “Pattern Variable
Constraints” on page 154), the pattern variable consumes some initial
subsequence of the fragment, using a backup and retry algorithm. First, the
wildcard consumes no elementary fragments, and matching continues with
the next simple-pattern in the pattern-sequence. If any simple-pattern in the
current pattern-sequence fails to match, back up to the wildcard, consume one
more elementary fragment than before, and retry matching the rest of the
pattern-sequence, starting one elementary fragment to the right of the
previous start point. Once the entire pattern-sequence has successfully
matched, the pattern variable binds to a fragment consisting of the sequence
of elementary fragments that it consumed.

■ It is an error for more than one of the simple-patterns directly contained in a
pattern-sequence to be a wildcard.

■ When the constraint is other than a wildcard constraint, the pattern variable
consumes as much of the fragment as can be parsed by the grammar
specified for the constraint in “Pattern Variable Constraints” on page 154. If
the parsing fails, the pattern match fails. The pattern variable binds to the
fragment specified in “Pattern Variable Constraints.” This can be a parsed
fragment rather than the original sequence of elementary fragments.

■ The ellipsis pattern-variable, ..., can only be used in an auxiliary rule set. It
represents a pattern variable with the same name as the current rule set and
a wildcard constraint.

A property-list-pattern matches a fragment as follows:

■ Parse the fragment using the grammar for property-listopt . If the parsing fails
or does not consume the entire fragment, the pattern match fails.

■ If the property-list-pattern contains #key and does not contain #all-keys,
the match fails if the SYMBOL part of any property is not the NAME in some
pattern-keyword in the property-list-pattern. Comparison of a SYMBOL to a

C H A P T E R 1 0

Macros

152 Patterns

NAME is case-insensitive, ignores backslash quoting, and is unaffected by the
lexical context of the NAME.

■ If the property-list-pattern contains #rest, bind the pattern variable
immediately following #rest to the entire fragment. If the pattern variable
has a non-wildcard constraint, parse the value part of each property
according to this constraint, fail if the parsing fails or does not consume the
entire value part, and substitute the fragment specified in “Pattern Variable
Constraints” on page 154 for the value part.

■ Each pattern-keyword in the property-list-pattern binds a pattern variable as
follows:

n A single question mark finds the first property whose SYMBOL is the NAME
of the pattern-keyword . Comparison of a SYMBOL to a NAME is
case-insensitive, ignores backslash quoting, and is unaffected by the
lexical context of the NAME. If the pattern-keyword has a non-wildcard
constraint, parse the property's value according to this constraint, fail if
the parsing fails or does not consume the entire value , and bind the
pattern variable to the fragment specified in “Pattern Variable
Constraints” on page 154. If the pattern-keyword has a wildcard
constraint, bind the pattern variable to the property's value .

n A double question mark finds every property with a matching SYMBOL,
processes each property's value as for a single question mark, and binds
the pattern variable to a sequence of the values, preserving the order of
properties in the input fragment. This sequence can only be used with
double question mark in a template. Constraint-directed parsing applies
to each property value individually.

■ If a single question mark pattern-keyword does not find any matching
property, then if a default is present, the pattern variable binds to the default
expression, otherwise the property is required so the pattern match fails.

■ If a double question mark pattern-keyword does not find any matching
property, then if a default is present, the pattern variable binds to a sequence
of one element, the default expression, otherwise the pattern variable binds
to an empty sequence.

■ Note: the default expression in a pattern-keyword is not evaluated during
macro expansion; it is a parsed expression fragment that is used instead of a
fragment from the macro call. The default is not subject to a pattern variable
constraint.

C H A P T E R 1 0

Macros

Patterns 153

Special Rules for Definitions 10

A list-style definition parses as the core reserved word define, an optional
sequence of modifiers, a DEFINE-LIST-WORD, and a possibly-empty list-fragment.
The left-hand side of a list-style-definition-rule matches this by treating the
definition-head as a pattern-sequence and matching it to the sequence of
modifiers, and then matching the pattern to the list-fragment. If no
definition-head is present, the sequence of modifiers must be empty. If no pattern
is present, the list-fragment must be empty. The word define and the
DEFINE-LIST-WORD do not participate in the pattern match because they were
already used to identify the macro being called and because the spelling of the
DEFINE-LIST-WORD might have been changed by renaming the macro during
module importing.

A body-style definition parses as the core reserved word define, an optional
sequence of modifiers, a DEFINE-BODY-WORD, a possibly-empty body-fragment,
the core reserved word end, and optional repetitions of the DEFINE-BODY-WORD
and the NAME (if any) that is the first token of the body-fragment. The left-hand
side of a body-style-definition-rule matches this by treating the definition-head as a
pattern-sequence and matching it to the sequence of modifiers, and then
matching the pattern to the body-fragment. If no definition-head is present, the
sequence of modifiers must be empty. If no pattern is present, the body-fragment
must be empty. If the body-fragment ends in a semicolon, this semicolon is
removed before matching. The optional semicolon in the rule is just decoration
and does not participate in the pattern match. The word define and the
DEFINE-BODY-WORD do not participate in the pattern match because they were
already used to identify the macro being called and because the spelling of the
DEFINE-BODY-WORD might have been changed by renaming the macro during
module importing. The word end and the two optional items following it in
the macro call are checked during parsing, and so do not participate in the
pattern match.

It is an error for a definition-head to contain more than one wildcard.

Special Rules for Statements 10

A statement parses as a BEGIN-WORD, a possibly-empty body-fragment, the core
reserved word end, and an optional repetition of the BEGIN-WORD. The
left-hand side of a statement-rule matches this by matching the pattern to the
body-fragment. If the rule does not contain a pattern, the body-fragment must be

C H A P T E R 1 0

Macros

154 Pattern Variable Constraints

empty. If the body-fragment ends in a semicolon, this semicolon is removed
before matching. The optional semicolon in the rule is just decoration and does
not participate in the pattern match. The BEGIN-WORD does not participate in
the pattern match because it was already used to identify the macro being
called and because its spelling might have been changed by renaming the
macro during module importing. The word end and the optional item
following it in the macro call are checked during parsing, and so do not
participate in the pattern match.

Special Rules for Function Macros 10

A call to a function macro parses as a FUNCTION-WORD followed by a
parenthesized, possibly-empty body-fragment. The left-hand side of a
function-rule matches this by matching the pattern to the body-fragment. If the
rule does not contain a pattern, the body-fragment must be empty. The
FUNCTION-WORD does not participate in the pattern match because it was
already used to identify the macro being called and because its spelling might
have been changed by renaming the macro during module importing. The
parentheses in the rule are just decoration and do not participate in the pattern
match.

Pattern Variable Constraints 10

Each pattern-variable in the left-hand side of a rule in a macro definition has a
constraint associated with it. This prevents the pattern from matching unless
the fragment matched to the pattern-variable satisfies the constraint. In most
cases it also controls how the matching fragment is parsed.

You specify a constraint in a pattern-variable by suffixing a colon and the
constraint name to the pattern variable name. Intervening whitespace is not
allowed. As an abbreviation, if a pattern variable has the same name as its
constraint, the pattern-variable can be written ?:the-name instead of
?the-name:the-name.

C H A P T E R 1 0

Macros

Pattern Variable Constraints 155

The following constraints are available:

Notes:

1. Where expression, operand, constituents or body appears in the grammar that
this constraint accepts, the bound fragment contains a parsed expression
fragment, not the original elementary fragments.

2. Parsing stops at an intermediate word.

3. The body is wrapped in begin … end to make it an expression, using the
standard binding of begin in the Dylan module. An empty body defaults
to #f.

4. A pattern-variable with a macro constraint accepts exactly one elementary
fragment, which must be a macro call fragment. It binds the pattern variable
to the expansion of the macro.

Some implementations and a future version of the Dylan language
specification might add more constraint choices to this table.

When a pattern variable has the same name as an auxiliary rule-set, its
constraint defaults to wildcard and can be omitted. Otherwise a constraint
must be specified in every pattern-variable and pattern-keyword.

Table 10-1 Available constraints

Constraint name Grammar accepted Binds pattern variable to

expression expression parsed expression
fragment

variable variable fragment(1)

name NAME one-token fragment

token TOKEN one-token fragment

body bodyopt (2) parsed expression
fragment (3)

case-body case-bodyopt (2) fragment(1)

macro macro fragment(4)

* (wildcard) fragment

C H A P T E R 1 0

Macros

156 Templates

A constraint applies only to the specific pattern variable occurrence to which it
is attached. It does not constrain other pattern variable occurrences with the
same name.

Intermediate Words 10

When a pattern-variable has a constraint of body or case-body, its parsing of
the fragment stops before any token that is an intermediate word. This allows
intermediate words to delimit clauses that have separate bodies, like else and
elseif in an if statement. The intermediate words of a macro are identified
as follows:

■ Define a body-variable to be a pattern variable that either has a constraint of
body or case-body, or names an auxiliary rule-set where some left-hand
side in that rule-set ends in a body-variable. This is a least fixed point, so a
recursive auxiliary rule-set does not automatically make its name into a
body-variable! Note that an ellipsis that stands for a pattern variable is a
body-variable when that pattern variable is one.

■ Define an intermediate-variable to be a pattern variable that either
immediately follows a body-variable in a left-hand side, or appears at the
beginning of a left-hand side in an auxiliary rule-set named by an
intermediate-variable.

■ An intermediate word is a NAME that either immediately follows a
body-variable in a left-hand side, or occurs at the beginning of a left-hand
side in an auxiliary rule-set named by an intermediate-variable.
Intermediate words are not reserved, they are just used as delimiters during
the parsing for a pattern-variable with a body or case-body constraint.

Templates 10

Approximately speaking, a template has the same structure as what it
constructs, but contains pattern variables that will be replaced by fragments
extracted from the macro call. Thus a template in the main-rule-set looks like
the macro expansion.

However, templates do not have a full grammar. A template is essentially any
sequence of tokens and substitutions in which all of Dylan’s brackets are

C H A P T E R 1 0

Macros

Templates 157

balanced: (), [], {}, #(), and #[]. Substitution for pattern variables
produces a sequence of tokens and other elementary fragments.

Note that using unparsed token sequences as templates allows a macro
expansion to contain macro calls without creating any inter-dependencies
between macros. Since the template is not parsed at macro definition time, any
macros called in the template do not have to be defined first, and macros can be
compiled independently of each other. This simplifies the implementation at
the minor cost of deferring some error checking from when a macro is defined
until the time when the macro is called.

The grammar for templates is the definition of template in “Templates” on
page 415.

All template-elements other than substitution are copied directly into the macro
expansion. The various kinds of substitution insert something else into the
macro expansion, as follows:

? NAME The fragment bound to the pattern variable named NAME.

name-prefixopt ? name-string-or-symbol name-suffixopt

The fragment bound to the pattern variable named
name-string-or-symbol, converted to a string or symbol and/or
concatenated with a prefix and/or suffix. Note that this rule
applies only when the first rule does not. The fragment must be
a NAME. Concatenate the prefix, if any, the characters of the
fragment, and the suffix, if any. The alphabetic case of the
characters of the fragment is unspecified. Convert this to the
same grammatical type (NAME, STRING, or SYMBOL) as
name-string-or-symbol. When the result is a NAME, its hygiene
context is the same as that of the fragment.

?? NAME separatoropt ...

The sequence of fragments bound to the pattern variable named
NAME, with separator inserted between each pair of fragments.
The pattern variable must have been bound by a ??
pattern-keyword. Separator can be a binary operator, comma, or
semicolon. If the size of the sequence is 1 or separator is omitted,
no separator is inserted. If the sequence is empty, nothing is
inserted.

... The fragment bound to the pattern variable that names this rule
set; this is only valid in an auxiliary rule set.

C H A P T E R 1 0

Macros

158 Auxiliary Rule Sets

?= NAME A reference to NAME, in the lexical context where the macro
was called.

It is an error for a single question-mark substitution to use a pattern variable
that was bound by a double question-mark pattern-keyword.

It is an error for a double question-mark substitution to use a pattern variable
that was bound by a single question-mark pattern-variable or pattern-keyword.

It is an error for a substitution to use a pattern variable that does not appear on
the left-hand side of the same rule.

When a template contains a separator immediately followed by a substitution,
and the fragment inserted into the macro expansion by the substitution is
empty, the separator is removed from the macro expansion.

Auxiliary Rule Sets 10

Auxiliary rule sets are like subroutines for rewrite rules. An auxiliary rule set
rewrites the value of a pattern variable after it is bound by a pattern and before
it is substituted into a template. Auxiliary rule sets only come into play after a
pattern has matched; the failure of all patterns in an auxiliary rule set to match
causes the entire macro call to be declared invalid, rather than back-tracking
and trying the next pattern in the calling rule set.

See the definition of auxiliary-rule-sets in “Auxiliary Rule Sets” on page 416.

A SYMBOL flags the beginning of an auxiliary rule set. For readability it is
generally written as name: rather than #"name". The name of the symbol is
the same as the name of the pattern variable that is rewritten by this auxiliary
rule set. All occurrences of this pattern variable in all rule sets are rewritten. A
pattern variable can occur in the very auxiliary rule set that rewrites that
pattern variable; this is how you write recursive rewrite rules, which greatly
expand the power of pattern-matching.

When an auxiliary rule set's pattern variable occurs in a double question-mark
pattern-keyword, the auxiliary rule set rewrites each property value in the
sequence individually.

The order of auxiliary rule sets in a macro definition is immaterial.

C H A P T E R 1 0

Macros

Hygiene 159

The ellipsis ... in patterns and templates of an auxiliary rule set means
exactly the same thing as the pattern variable that is rewritten by this auxiliary
rule set. Using ellipsis instead of the pattern variable can make recursive
rewrite rules more readable.

Hygiene 10

Dylan macros are always hygienic. The basic idea is that each named value
reference in a macro expansion means the same thing as it meant at the place in
the original source code from which it was copied into the macro expansion.
This is true whether that place was in the macro definition or in the macro call.
Because a macro expansion can include macro calls that need further
expansion, named value references in one final expansion can come from
several different macro definitions and can come from several different macro
calls, either to different macros or—in the case of recursion—distinct calls to
the same macro.

(Sometimes the property that variable references copied from a macro call
mean the same thing in the expansion is called “hygiene” and the property that
variable references copied from a macro definition mean the same thing in the
expansion is called “referential transparency.” We include both properties in
the term “hygiene.”)

Specifically, a macro can bind temporary variables in its expansion without the
risk of accidentally capturing references in the macro call to another binding
with the same name. Furthermore, a macro can reference module bindings in
its expansion without the risk of those references accidentally being captured
by bindings of other variables with the same name that surround the macro
call. A macro can reference module bindings in its expansion without
worrying that the intended bindings might have different names in a module
where the macro is called.

One way to implement this is for each template-element that is a NAME to be
replaced in the macro expansion by a special token which plays the same
grammatical role as a NAME but remembers three pieces of information:

■ The original NAME.

■ The lexical context where the macro was defined, which is just a module
since macro definitions are only allowed at top level, not inside of bindings.

C H A P T E R 1 0

Macros

160 Hygiene

■ The specific macro call occurrence. This could be an integer that is
incremented each time a macro expansion occurs.

In general one cannot know until all macros are expanded whether a NAME is a
bound variable reference, a module binding reference, a variable that is being
bound, or something that is not a binding name at all, such as a definition
modifier or an intermediate word. Thus the information for each of those cases
is retained in the special token. A named value reference and a binding connect
if and only if the original NAMES and the specific macro call occurrences are
both the same. (In that case, the lexical contexts will also be the same, but this
need not be checked.) A named value reference and a binding never connect if
one originated in a template and the other originated in a macro call.

For purposes of hygiene, a pattern-keyword default is treated like part of a
template, even though it is actually part of a pattern.

The mapping from getters to setters done by the := operator is hygienic. In all
cases the setter name is looked up in the same lexical context and macro call
occurrence as the getter name.

Intentional Hygiene Violation 10

Sometimes it is necessary for a macro to violate the hygienic property, for
example to include in a macro expansion a named value reference to be
executed in the lexical context where the macro was called, not the lexical
context where the macro was defined. Another example is creating a local
binding in a macro expansion that will be visible to the body of the macro.
This feature should be used sparingly, as it can be confusing to users of the
macro, but sometimes it is indispensable.

The construct ?= NAME in a template inserts into the expansion a reference to
NAME, in the lexical context where the macro was called. It is as if NAME came
from the macro call rather than from the template.

Hygiene Versus Module Encapsulation 10

A named value reference in a macro expansion that was produced by a
template-element that is a NAME and that does not refer to a local binding
created by the macro expansion must have the same meaning as would a
named value reference with the same name adjacent to the macro definition.

C H A P T E R 1 0

Macros

Rewrite Rule Examples 161

This is true even if the macro call is in a different module or a different library
from the one in which the macro definition occurs, even if the binding is not
exported.

This allows exported macros to make use of private bindings without requiring
these bindings to be exported for general use. The module that calls the macro
does not need to import the private bindings used by the expansion.

Implementations must use some automatic mechanism for marking the
bindings potentially referenced by macro expansions and must make such
bindings available to any library where the macro is accessible. In general one
cannot tell when a macro is defined what bindings are going to be referenced
by macro expansions, because the right-hand sides of rewrite rules are not fully
parsed until after a macro is called and expanded. However, an upper bound
on this set of bindings can be computed.

Rewrite Rule Examples 10

The following definitions of all of the built-in macros are provided as
examples. This section is not intended to be a tutorial on how to write macros,
just a collection of demonstrations of some of the tricks.

The built-in macros cannot really be implemented this way, for example, if
and case cannot really both be implemented by expanding to the other.
Certain built-in macros cannot be implemented with rewrite rules or
necessarily rewrite into implementation-dependent code, so blank right-hand
sides are shown for them.

Statement Macros 10

Begin 10

define macro begin

 { begin ?:body end } => { ?body }

end;

C H A P T E R 1 0

Macros

162 Rewrite Rule Examples

Block 10

define macro block

 { block (?:name) ?ebody end }

 => { with-exit(method(?name) ?ebody end) }

 { block () ?ebody end }

 => { ?ebody }

 // Left-recursive so leftmost clause is innermost

 ebody:

 { ... exception (?excp, #rest ?options:expression,

 #key ?test:expression,

 ?init-arguments:expression)

 ?:body }

 => { with-handler(method() ... end,

 method() ?body end,

 ?excp, ?options) }

 { ?abody cleanup ?cleanup:body}

 => { with-cleanup(method() ?abody end, method () ?cleanup

end) }

 { ?abody }

 => { ?abody }

 abody:

 { ?main:body afterwards ?after:body }

 => { with-afterwards(method() ?main end, method () ?after

end) }

 { ?main:body }

 => { ?main }

 excp:

 { ?type:expression } => { ?type }

 { ?:name :: ?type:expression } => { ?type, condition: ?name }

end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 163

Case 10

define macro case

 { case ?:case-body end } => { ?case-body }

 case-body:

 { ?test:expression => ?:body ... } => { if (?test) ?body

 else ... end if }

 { otherwise ?:body } => { ?body }

 { } => { #f }

end;

For 10

// This macro has three auxiliary macros, whose definitions

follow

define macro for

 { for (?header) ?fbody end } => { for-aux ?fbody ?header

end }

 // pass main body and finally body as two expressions

 fbody:

 { ?main:body } => { ?main, #f }

 { ?main:body finally ?val:body } => { ?main, ?val }

 // convert iteration clauses to property list via for-clause

macro

 header:

 { ?v:variable in ?c:expression, ... }

 => { for-clause(?v in ?c) ... }

 { ?v:variable = ?e1:expression then ?e2:expression, ... }

 => { for-clause(?v = ?e1 then ?e2) ... }

 { ?v:variable from ?e1:expression ?to, ... }

C H A P T E R 1 0

Macros

164 Rewrite Rule Examples

 => { for-clause(?v from ?e1 ?to) ... }

 { #key ?while:expression } => { for-clause(~?while

stop) }

 { #key ?until:expression } => { for-clause(?until

stop) }

 { } => { }

 // parse the various forms of numeric iteration clause

 to:

 { to ?limit:expression by ?step:expression }

 => { hard ?limit ?step }

 { to ?limit:expression } => { easy ?limit 1 > }

 { above ?limit:expression ?by } => { easy ?limit ?by <= }

 { below ?limit:expression ?by } => { easy ?limit ?by >= }

 { ?by } => { loop ?by }

 by:

 { by ?step:expression } => { ?step }

 { } => { 1 }

end;

// Auxiliary macro to make the property list for an iteration

clause.

// Each iteration clause is a separate call to this macro so the

// hygiene rules will keep the temporary variables for each

clause

// distinct.

// The properties are:

// init0: - constituents for start of body, outside the loop

// var1: - a variable to bind on each iteration

// init1: - initial value for that variable

// next1: - value for that variable on iterations after the

first

// stop1: - test expression, stop if true, after binding var1's

// var2: - a variable to bind on each iteration, after stop1

tests

// next2: - value for that variable on every iteration

// stop2: - test expression, stop if true, after binding var2's

C H A P T E R 1 0

Macros

Rewrite Rule Examples 165

define macro for-clause

 // while:/until: clause

 { for-clause(?e:expression stop) }

 => { , stop2: ?e }

 // Explicit step clause

 { for-clause(?v:variable = ?e1:expression then ?e2:expression)

}

 => { , var1: ?v, init1: ?e1, next1: ?e2 }

 // Collection clause

 { for-clause(?v:variable in ?c:expression) }

 => { , init0: [let collection = ?c;

 let (initial-state, limit,

 next-state, finished-state?,

 current-key, current-element)

 = forward-iteration-protocol(collection);

]

 , var1: state, init1: initial-state

 , next1: next-state(collection, state)

 , stop1: finished-state?(collection, state, limit)

 , var2: ?v, next2: current-element(collection, state) }

 // Numeric clause (three cases depending on ?to right-hand

side)

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 loop ?by:expression) }

 => { , init0: [let init = ?e1;

 let by = ?by;]

 , var1: ?v :: ?t, init1: init, next1: ?v + by }

C H A P T E R 1 0

Macros

166 Rewrite Rule Examples

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 easy ?limit:expression ?by:expression

?test:token) }

 => { , init0: [let init = ?e1;

 let limit = ?limit;

 let by = ?by;]

 , var1: ?v :: ?t, init1: init, next1: ?v + by

 , stop1: ?v ?test limit }

 { for-clause(?v:name :: ?t:expression from ?e1:expression

 hard ?limit:expression ?by:expression) }

 => { , init0: [let init = ?e1;

 let limit = ?limit;

 let by = ?by;]

 , var1: ?v :: ?t, init1: init, next1: ?v + by

 , stop1: if (by >= 0) ?v > limit else ?v < limit end if }

end;

// Auxiliary macro to expand multiple for-clause macros and

// concatenate their expansions into a single property list.

define macro for-aux

 { for-aux ?main:expression, ?value:expression, ?clauses:* end }

 => { for-aux2 ?main, ?value ?clauses end }

 clauses:

 { ?clause:macro ... } => { ?clause ... }

 { } => { }

end;

// Auxiliary macro to assemble collected stuff into a loop.

// Tricky points:

// loop iterates by tail-calling itself.

// return puts the finally clause into the correct lexical scope.

// ??init0 needs an auxiliary rule set to strip off the shielding

// brackets that make it possible to stash local declarations in

// a property list.

// ??var2 and ??next2 need a default because let doesn't allow

// an empty variable list.

C H A P T E R 1 0

Macros

Rewrite Rule Examples 167

// ??stop1 and ??stop2 need a default because if () is invalid.

define macro for-aux2

 { for-aux2 ?main:expression, ?value:expression,

 #key ??init0:*, ??var1:variable,

 ??init1:expression, ??next1:expression,

 ??stop1:expression = #f,

 ??var2:variable = x, ??next2:expression = 0,

 ??stop2:expression = #f

 end }

 => { ??init0 ...

 local method loop(??var1, ...)

 let return = method() ?value end method;

 if (??stop1 | ...) return()

 else let (??var2, ...) = values(??next2, ...);

 if(??stop2 | ...) return()

 else ?main; loop(??next1, ...)

 end if;

 end if;

 end method;

 loop(??init1, ...) }

 // strip off brackets used only for grouping

 init0:

 { [?stuff:*] } => { ?stuff }

end;

C H A P T E R 1 0

Macros

168 Rewrite Rule Examples

If 10

define macro if

 { if (?test:expression) ?:body ?elses end }

 => { case ?test => ?body;

 otherwise ?elses end }

 elses:

 { elseif (?test:expression) ?:body ... }

 => { case ?test => ?body;

 otherwise ... end }

 { else ?:body } => { ?body }

 { } => { #f }

end;

Method 10

define macro method

 { method (?parameters:*) => (?results:*) ; ?:body end } =>

 { method (?parameters:*) => (?results:*) ?:body end } =>

 { method (?parameters:*) => ?result:variable ; ?:body end } =>

 { method (?parameters:*) ; ?:body end } =>

 { method (?parameters:*) ?:body end } =>

end;

Select 10

define macro select

 { select (?what) ?:case-body end } => { ?what; ?case-body }

 what:

 { ?object:expression by ?compare:expression }

 => { let object = ?object;

 let compare = ?compare

}

 { ?object:expression } => { let object = ?object;

 let compare = \== }

C H A P T E R 1 0

Macros

Rewrite Rule Examples 169

 case-body:

 { otherwise ?:body } => { ?body }

 { } => { error("select error") }

 { ?keys => ?:body ... } => { if (?keys) ?body

 else ... end if }

 keys:

 { ?key:expression } => { compare(?key, object) }

 { ?key:expression, ... } => { compare(?key, object) |

... }

end;

Unless 10

define macro unless

 { unless (?test:expression) ?:body end }

 => { if (~ ?test) ?body end }

end;

Until 10

define macro until

 { until (?test:expression) ?:body end }

 => { local method loop ()

 if (~ ?test)

 ?body;

 loop()

 end if;

 end method;

 loop() }

end;

C H A P T E R 1 0

Macros

170 Rewrite Rule Examples

While 10

define macro while

 { while (?test:expression) ?:body end }

 => { local method loop ()

 if (?test)

 ?body;

 loop()

 end if;

 end method;

 loop() }

end;

Definition Macros 10

Define Class 10

define macro class-definer

 { define ?mods:* class ?:name (?supers) ?slots end } =>

 supers:

 { ?super:expression, ... } =>

 { } =>

// the = feature in slot specs is missing from this.

 slots:

 { inherited slot ?:name, #rest ?options:*; ... } =>

 { ?mods:* slot ?:name, #rest ?options:*; ... } =>

 { ?mods:* slot ?:name :: ?type:expression, #rest ?options:*;

... }

 =>

 { required keyword ?key:expression, #rest ?options:*; ... } =>

 { keyword ?key:expression, #rest ?options:*; ... } =>

 { } =>

end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 171

Define Constant 10

define macro constant-definer

 { define ?mods:* constant ?vars:* = ?init:expression } =>

end;

Define Domain 10

define macro domain-definer

 { define inert domain ?:name (?types) } =>

 types:

 { ?type:expression, ... } => { ?type, ... }

 { } => { }

end;

Define Generic 10

define macro generic-definer

 { define ?mods:* generic ?:name ?rest:* } =>

 rest:

 { (?parameters:*), #key } =>

 { (?parameters:*) => ?:variable, #key } =>

 { (?parameters:*) => (?variables:*), #key } =>

end;

Define Library 10

define macro library-definer

 { define library ?:name ?items end } =>

 items:

 { use ?:name, #rest ?options:*; ... } =>

 { export ?names; ... } =>

 { } =>

C H A P T E R 1 0

Macros

172 Rewrite Rule Examples

 names:

 { ?:name } =>

 { ?:name, ... } =>

end;

Define Method 10

define macro method-definer

 { define ?mods:* method ?:name ?rest end } =>

 rest:

 { (?parameters:*) => (?results:*) ; ?:body } =>

 { (?parameters:*) => (?results:*) ?:body } =>

 { (?parameters:*) => ?result:variable ; ?:body } =>

 { (?parameters:*) ; ?:body } =>

 { (?parameters:*) ?:body } =>

end;

Define Module 10

define macro module-definer

 { define module ?:name ?items end } =>

 items:

 { use ?:name, #rest ?options:*; ... } =>

 { export ?names; ... } =>

 { create ?names; ... } =>

 { } =>

 names:

 { ?:name } =>

 { ?:name, ... } =>

end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 173

Define Variable 10

define macro variable-definer

 { define ?mods:* variable ?vars:* = ?init:expression } =>

end;

Additional Examples 10

The following macros are not built-in, but are simply supplied as examples.
Each is shown as a definition followed by a sample call.

Test and Test-setter 10

define macro test

 { test(?object:expression) } =>

 { frame-slot-getter(?object,

#"test") }

end macro;

define macro test-setter

 { test-setter(?value:expression, ?object:expression) }

 => { frame-slot-setter(?value, ?object, #"test") }

end macro;

test(foo.bar) := foo.baz;

C H A P T E R 1 0

Macros

174 Rewrite Rule Examples

Transform! 10

define macro transform!

 // the main rule

 { transform!(?xform:expression, ?x:expression, ?y:expression,

 #rest ?more:expression) }

 => { let xform = ?xform;

 let (nx, ny) = transform(xform, ?x, ?y);

 ?x := nx; ?y := ny;

 transform!(xform, ?more) }

 // base case

 { transform!(?xform:expression) } => { ?xform }

end macro;

transform!(w.transformation, xvar, yvar, w.pos.x, w.pos.y);

Formatting-table 10

define macro formatting-table

 { formatting-table (?:expression,

 #rest ?options:expression,

 #key ?x-spacing:expression = 0,

 ?y-spacing:expression = 0)

 ?:body end }

 => { do-formatting-table(?expression, method() ?body end,

 ?options) }

end macro;

formatting-table (stream, x-spacing: 10, y-spacing: 12)

 foobar(stream)

end;

C H A P T E R 1 0

Macros

Rewrite Rule Examples 175

With-input-context 10

define macro with-input-context

 { with-input-context (?context-type:expression,

 #key ?override:expression = #f)

 ?bbody end }

 => { do-with-input-context(?context-type, ?bbody,

 override: ?override) }

 bbody:

 { ?:body ?clauses } => { list(?clauses), method() ?body end }

 clauses:

 { } => { }

 { on (?:name :: ?spec:expression, ?type:variable) ?:body ... }

 => { pair(?spec, method (?name :: ?spec, ?type) ?body end),

 ... }

end macro;

with-input-context (context-type, override: #t)

 // the body that reads from the user

 read-command-or-form (stream);

 // the clauses that dispatch on the type

 on (object :: <command>, type) execute-command (object);

 on (object :: <form>, type) evaluate-form (object, type);

end;

Define Command 10

define macro command-definer

 { define command ?:name (?arguments:*) (#rest

?options:expression)

 ?:body end }

 => { define-command-1 ?name (?arguments) ?body end;

 define-command-2 ?name (?arguments) (?options) end }

end macro;

C H A P T E R 1 0

Macros

176 Rewrite Rule Examples

// define the method that implements a command

// throws away the "stuff" in each argument used by the command

parser

define macro define-command-1

 { define-command-1 ?:name (?arguments) ?:body end }

 => { define method ?name (?arguments) ?body end }

 // map over ?arguments, reducing each to a parameter-list entry

 // but when we get to the first argument that has a default, put

 // in #key and switch to the key-arguments loop

 arguments:

 { ?:variable = ?default:expression ?stuff:*, ?key-arguments }

 => { #key ?variable = ?default, ?key-arguments }

 { ?argument, ... } => { ?argument, ... }

 { } => { }

 // map over keyword arguments the same way, each must

 // have a default

 key-arguments:

 { ?key-argument, ... } => { ?key-argument, ... }

 { } => { }

 // reduce one required argument spec to a parameter-list entry

 argument:

 { ?:variable ?stuff:* } => { ?variable }

 // reduce one keyword argument spec to a parameter-list entry

 key-argument:

 { ?:variable = ?default:expression ?stuff:* }

 => { ?variable = ?default }

end macro;

// generate the datum that describes a command and install it

define macro define-command-2

 { define-command-2 ?:name (?arguments) (#rest ?options:*) end }

 => { install-command(?name, list(?arguments), ?options) }

C H A P T E R 1 0

Macros

Rewrite Rule Examples 177

 // map over ?arguments, reducing each to a data structure

 arguments:

 { ?argument, ... } => { ?argument, ... }

 { } => { }

 // reduce one argument specification to a data structure

 argument:

 { ?:name :: ?type:expression = ?default:expression ?details }

 => { make(<argument-info>, name: ?"name", type: ?type,

 default: ?default, ?details) }

 { ?:name :: ?type:expression ?details }

 => { make(<argument-info>, name: ?"name", type: ?type,

?details) }

 // translate argument specification to <argument-info> init

keywords

 details:

 { ?key:name ?value:expression ... } => { ?#"key" ?value, ... }

 { } => { }

end macro;

define command com-show-home-directory

 (directory :: <type> provide-default #t,

 before :: <time> = #() prompt "date",

 after :: <time> = #() prompt "date")

 // Options

 (command-table: directories,

 name: "Show Home Directory")

 body()

end command com-show-home-directory;

C H A P T E R 1 0

Macros

178 Rewrite Rule Examples

Get-resource 10

// The idea is that in this application each library has its own

// variable named $library, which is accessible to modules in

that

// library. Get-resource gets a resource associated with the

library

// containing the call to it. Get-resource-from-library is a

function.

// The get-resource macro is a device to make programs more

concise.

define macro get-resource

 { get-resource(?type:expression, ?id:expression) }

 => { get-resource-from-library(?=$library, ?type, ?id) }

end macro;

show-icon(get-resource(ResType("ICON"), 1044));

Completing-from-suggestions 10

// The completing-from-suggestions macro defines a lexically

visible

// helper function called "suggest", which is only meaningful

inside

// of calls to the completer. The "suggest" function is passed

as an

// argument to the method passed to complete-input;

alternatively it

// could have been defined in a local declaration wrapped around

the

// method.

define macro completing-from-suggestions

 { completing-from-suggestions (?stream:expression,

C H A P T E R 1 0

Macros

Rewrite Rule Examples 179

 #rest ?options:expression)

 ?:body end }

 =>{ complete-input(?stream,

 method (?=suggest) ?body end,

 ?options) }

end macro;

completing-from-suggestions (stream, partial-completers: #(' ',

'-'))

 for (command in commands)

 suggest (command, command-name (command))

 end for;

end completing-from-suggestions;

Define Jump-instruction 10

define macro jump-instruction-definer

 { define jump-instruction ?:name ?options:* end }

 => { register-instruction("j" ## ?#"name",

 make(<instruction>,

 debug-name: "j" ## ?"name",

 ?options)) }

end macro;

define jump-instruction eq cr-bit: 2, commutative?: #t end;

C H A P T E R 1 0

Macros

180 Rewrite Rule Examples

C H A P T E R 1 1

Contents

181

Contents

Figure 11-0
Listing 11-0
Table 11-0

11 The Built-In Classes

Overview 183
Objects 183
Types 185

Types 185
Classes 186
Singletons 189

Simple Objects 190
Characters 190
Symbols 191
Booleans 192

Numbers 192
Numbers 192
Complex Numbers 193
Reals 194
Floats 195
Rationals 197
Integers 197

Collections 199
Collections 199
Explicit Key Collections 202
Sequences 202
Mutable Collections 205
Stretchy Collections 209
Arrays 210
Vectors 212
Deques 216

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

182

Contents

Lists 218
Ranges 221
Strings 223
Tables 226

Functions 229
Functions 229
Generic Functions 231
Methods 233

Conditions 234
Conditions 234
Serious Conditions 236
Errors 236
Warnings 238
Restarts 240
Aborts 242

C H A P T E R 1 1

Overview

183

The Built-In Classes 11

Overview 11

This chapter contains an entry for every class defined by Dylan.

The superclasses listed for a class

C

 are those classes defined by the Dylan
language from which

C

 most directly inherits. They are not required to be the
direct superclasses of

C

, because implementations are free to insert
implementation-defined classes in the class hierarchy. However, any classes
defined by Dylan which appear in the class precedence list of

C

 must appear in
the same order in which they would appear if the specified superclasses were
the direct superclasses of

C

, in the order given.

All classes are specified as open or sealed. A class may be specifed as abstract;
if it is not, then it is concrete. A class may be specified as primary; if it is not,
than it is free. A class may be specified as instantiable. If it is not, then it is
uninstantiable. Chapter 9, “Sealing,” contains a complete description of these
characteristics.

An implementation may choose to impose fewer restrictions than specified. For
example, a class specified as sealed may be left open, and a class specified as
primary may be left free. However, any program which takes advantage of this
liberality will not be portable.

Each class entry includes tables of operations defined on the class. These tables
are cross references to Chapter 12, “The Built-In Functions,” and represent
redundant information. A function, generic function, or method is listed under
a class if one of its arguments is specialized on the class. In addition,
constructors are listed. Not all generic functions which specialize on

<object>

are listed.

Objects 11

<object>

[Open Abstract Class] 11

The class of all Dylan objects.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 1

The Built-In Classes

184

Objects

Superclasses:

None.

<object>

 is the root of the Dylan class hierarchy.

Init-keywords:

None.

Description:

The class

<object>

 is the root of the type system. All objects are general
instances of

<object>

, all types are subtypes of

<object>

, and all classes are
subclasses of

<object>

.

Operations:

The class

<object>

 provides the following operations:

Table 11-1

Functions on <object>

Function Description Page

identity

Returns its argument. 274

always

Returns a function that always returns a
particular object.

338

instance?

Tests whether an object is an instance of a
type.

331

object-class

Returns the class of an object. 332

==

Compares two objects for identity. 255

~==

Compares two objects for nonidentity. 256

object-hash

The hash function for the equivalence
predicate ==.

331

Table 11-2

Generic functions on <object>

Function Description Page

initialize

Performs instance initialization that
cannot be specified declaratively by a
class definition.

247

as

Coerces an object to a type. 275

shallow-copy

Returns a copy of its argument. 279

C H A P T E R 1 1

The Built-In Classes

Types

185

Types 11

Types 11

<type>

[Sealed Abstract Class] 11

The class of all types, including classes and other types.

Superclasses:

<object>

Init-keywords:

None.

type-for-copy

Returns an appropriate type for creating
mutable copies of its argument.

279

size

Returns the size of its argument. 281

empty?

Returns true if its argument is empty. 281

Table 11-3

Methods on <object>

Function Description Page

initialize

Performs instance initialization that
cannot be specified declaratively by a
class definition.

247

type-for-copy

Returns an appropriate type for creating
mutable copies of its argument.

279

=

Compares two objects for equality. 256

Table 11-2

Generic functions on <object> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

186

Types

Description:

The class of all types. All types (including

<type>

 and

<class>

) are instances
of

<type>

.

Operations:

The class

<type>

 provides the following operations:

Classes 11

<class>

[Sealed Instantiable Class] 11

The class of all Dylan classes.

Superclasses:

<type>

Init-keywords:

The class

<class>

 supports the following init-keywords:

superclasses:

An instance of

<class>

 or

<sequence>

 specifying the direct
superclasses of the class. If it is a sequence, the elements of the
sequence must be instances of

<class>

. The default value is

<object>

. The meaning of the order of the superclasses is the
same as in

define class

.

abstract?:

An instance of

<boolean>

 specifying whether the class is
abstract or concrete. The default value is

#f

.

slots:

An instance of

<sequence>

 containing slot specs, where each
slot-spec is a sequence of keyword/value pairs.

Table 11-4

Functions on <type>

Function Description Page

instance?

Tests whether an object is an instance of a
type.

331

subtype?

Tests whether a type is a subtype of
another type.

332

union

Returns the union of two types. 253

C H A P T E R 1 1

The Built-In Classes

Types

187

The following keywords and corresponding values are accepted
by all implementations. Implementations may also define
additional keywords and values for use within slot specs.

getter:

A generic function of one argument. Unless the
allocation of the slot is virtual, the getter method
for the slot will be added to this generic
function. This option is required.

setter: A generic function of two arguments, or #f
indicating “no setter.” Unless the allocation of
the slot is virtual, the setter method for the slot
will be added to this generic function. The
default value is #f.

type: A type. Values stored in the slot are restricted to
be of this type. The default value is <object>.

deferred-type:
A function of no arguments, which returns a
type, and is called once to compute the type of
the slot, within the call to make which constructs
the first instance of that class. For a given slot
spec, either type: or deferred-type: may be
specified, but not both.

init-value:
A default initial value for the slot. This option
cannot be specified along with
init-function: or
required-init-keyword: and it cannot be
specified for a virtual slot. There is no default.

init-function:
A function of no arguments. This function will
be called to generate an initial value for the slot
when a new instances is created. This option
cannot be specified along with init-value: or
required-init-keyword: and it cannot be
specified for a virtual slot.. There is no default

init-keyword:
A keyword. This option permits an initial value
for the slot to be passed to make, as a keyword
argument using this keyword. This option cannot

C H A P T E R 1 1

The Built-In Classes

188 Types

be specified for a virtual slot. There is no default.
This option cannot be specified along with
required-init-keyword:.

required-init-keyword:
A keyword. This option is like init-keyword:,
except it indicates an init-keyword that must be
provided when the class is instantiated. If make
is called on the class and a required init-keyword
is not provided in the defaulted initialization
arguments, an error is signaled. There is no
default. This option cannot be specified if
init-keyword:, init-value:, or
init-function: is specified, or for a virtual
slot.

allocation:
One of the keywords instance:, class:,
each-subclass:, or virtual:, or an
implementation defined keyword. The meaning
of this option is the same as adding the
corresponding adjective to a define class
form.

Description: The class of all classes. All classes (including <class>) are general instances of
<class>.

In most programs the majority of classes are created with define class.
However, there is nothing to prevent programmers from creating classes by
calling make, for example, if they want to create a class without storing it in a
module binding, or if they want to create new classes at runtime.

If make is used to create a new class and creating the new class would violate
any restrictions specified by sealing directives, then an error of type
<sealed-object-error> is signaled.

C H A P T E R 1 1

The Built-In Classes

Types 189

Operations: The class <class> provides the following operations::

Singletons 11

<singleton> [Sealed Instantiable Class] 11

The class of types that indicate a single object.

Superclasses: <type>

Init-keywords: The class <singleton> supports the following init-keyword:

Table 11-5 Functions on <class>

Function Description Page

all-superclasses Returns all the superclasses of a class. 332

direct-superclass
es

Returns the direct superclasses of a class. 333

direct-subclasses Returns the direct subclasses of a class. 333

Table 11-6 Generic functions on <class>

Function Description Page

make Returns a general instance of its first
argument.

246

limited Returns a limited subtype of a class. 251

Table 11-7 Methods on <class>

Function Description Page

make Returns a general instance of its first
argument.

247

C H A P T E R 1 1

The Built-In Classes

190 Simple Objects

object: An instance of <object>. The object that the singleton
indicates. There is no default for this argument. If it is not
supplied, an error will be signaled.

Description: The class of singletons.

If a singleton for the specified object already exists, implementations may
return it rather than allocating a new singleton.

Operations: None.

Simple Objects 11

Characters 11

<character> [Sealed Class] 11

The class of characters.

Superclasses: <object>

Init-keywords: None.

Description: The class of characters. All characters are instances of <character>.

Operations: The class <character> provides the following operations:

Table 11-8 Methods on <character>

Function Description Page

< Returns true if its first operand is less
than its second operand.

258

C H A P T E R 1 1

The Built-In Classes

Simple Objects 191

Symbols 11

<symbol> [Sealed Class] 11

The class of symbols.

Superclasses: <object>

Init-keywords: None.

Description: The <symbol> class provides a built-in, non-case-sensitive dictionary that
associates a string with a unique immutable object that can be compared with
== (which should be faster than calling a string-comparison routine). This
dictionary is accessed through the as function: as(<symbol>, string) and
as(<string>, symbol). Any string can be used.

Operations: The class <symbol> provides the following operations:

as-uppercase Coerces an object to uppercase. 277

as-lowercase Coerces an object to lowercase. 278

as Coerces an object to a type. 275

Table 11-9 Methods on <symbol>

Function Description Page

as Coerces an object to a type. 275

Table 11-8 Methods on <character> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

192 Numbers

Booleans 11

<boolean> [Sealed Class] 11

The class of boolean values.

Superclasses: <object>

Init-keywords: None.

Operations: None.

Description: The class of boolean values. The literal constants #t and #f are general
instances of <boolean>. Note that for the purposes of conditional
expressions, all objects besides #f count as true. (This does not imply any
other objects are instances of <boolean>.)

Numbers 11

Numbers 11

<number> [Open Abstract Class] 11

The class of all numbers.

Superclasses: <object>

Init-keywords: None.

Operations: None.

Description: The class of all numbers.

C H A P T E R 1 1

The Built-In Classes

Numbers 193

The class <number> is open, to allow programmers to create additional
numeric classes. The built-in numeric operations do not provide default
implementations for <number>, but for <complex>, a sealed subclass of
<number>.

Complex Numbers 11

<complex> [Sealed Abstract Class] 11

The class of complex numbers.

Superclasses: <number>

Init-keywords: None.

Description: The sealed superclass of all built-in numbers, including real numbers. There
are no non-real subclasses of <complex> defined by the language, but
implementations may define such subclasses. Because <complex> and all its
defined subclasses are sealed, implementation-defined subclasses may be
added efficiently.

Many built-in functions are defined to have methods on <complex>. This
means that the function is defined on all built-in subclasses of <complex>. It
does not imply that there is a single method specialized on the <complex>
class.

Operations: The class <complex> provides implementations for the following functions:

Table 11-10 Methods on <complex>

Function Description Page

= Compares two objects for equality. 256

zero? Tests for the property of being equal to
zero.

262

+ Returns the sum of its arguments. 264

* Returns the product of its arguments. 265

C H A P T E R 1 1

The Built-In Classes

194 Numbers

Reals 11

<real> [Sealed Abstract Class] 11

The class of real numbers.

Superclasses: <complex>

Init-keywords: None.

Description: The class of real numbers.

Operations: The class <real> provides implementations for the following functions:

- Returns the difference of its arguments. 265

/ Returns the quotient of its arguments. 265

^ Raises an object to a specified power. 270

abs Returns the absolute value of its
argument.

271

Table 11-11 Functions on <real>

Function Description Page

floor Truncates a real number towards
negative infinity.

266

ceiling Truncates a real number towards positive
infinity.

267

round Rounds a real number towards the
nearest mathematical integer.

267

truncate Truncates a real number towards zero. 268

Table 11-10 Methods on <complex> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

Numbers 195

Floats 11

The classes <single-float> and <double-float> are intended but not
required to be the corresponding IEEE types. The class <extended-float> is
intended but not required to have more range and/or precision than
<double-float>.

If an implementation has fewer than three floating point classes, the names
<single-float>, <double-float> and <extended-float> may all refer
to the same object.

floor/ Returns the floor of the quotient of two
numbers.

268

ceiling/ Returns the ceiling of the quotient of two
numbers.

268

round/ Rounds off the quotient of two numbers. 269

truncate/ Returns the truncated quotient of two
numbers.

269

modulo Returns the second value of floor/. 270

remainder Returns the second value of truncate/. 270

Table 11-12 Methods on <real>

Function Description Page

< Returns true if its first operand is less
than its second operand.

258

positive? Tests for the property of being positive. 263

negative? Tests for the property of being negative. 263

integral? Tests for the property of being integral. 263

negative Returns the negation of an object. 266

Table 11-11 Functions on <real> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

196 Numbers

<float> [Sealed Abstract Class] 11

The class of floating-point numbers.

Superclasses: <real>

Init-keywords: None.

Description: The class of all floating-point numbers. This class is abstract. All floating point
numbers will be instances of some concrete subclass of this class.

Operations: None.

<single-float> [Sealed Class] 11

The class of single-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of single-precision floating-point numbers. This class is intended but
not required to correspond to IEEE single-precision.

Operations: None.

<double-float> [Sealed Class] 11

The class of double-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of double-precision floating-point numbers. This class is intended but
not required to correspond to IEEE double-precision.

Operations: None.

C H A P T E R 1 1

The Built-In Classes

Numbers 197

<extended-float> [Sealed Class] 11

The class of extended-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of extended-precision floating-point numbers. This class is intended
but not required to provide more precision that <double-float>.

Operations: None.

Rationals 11

<rational> [Sealed Abstract Class] 11

The class of rational numbers.

Superclasses: <real>

Init-keywords: None.

Description: The class of rational numbers.

Operations: None.

Integers 11

<integer> [Sealed Class] 11

The class of integers.

Superclasses: <rational>

Init-keywords: None.

Description: The class of integers.

C H A P T E R 1 1

The Built-In Classes

198 Numbers

Implementations are required to support integers with at least 28 bits of
precision. The overflow and underflow behavior is implementation-defined.
(Some implementations may choose to have integers of unlimited size, but this
is not required.)

The result of dividing two integers with / is implementation defined. Portable
programs should use floor/, ceiling/, round/, or truncate/ to divide
two integers.

Operations: The class <integer> provides the following operations:

Table 11-13 Functions on <integer>

Function Description Page

odd? Tests for the property of being an odd
number.

262

even? Tests for the property of being an even
number.

262

logior Returns the bitwise inclusive or of its
integer arguments.

271

logxor Returns the bitwise exclusive or of its
integer arguments.

271

logand Returns the bitwise and of its integer
arguments.

272

lognot Returns the bitwise not of its integer
argument.

272

logbit? Tests the value of a particular bit in its
integer argument.

272

ash Performs an arithmetic shift on its first
argument.

273

lcm Returns the least common multiple of
two integers.

273

gcd Returns the greatest common divisor of
two integers.

274

C H A P T E R 1 1

The Built-In Classes

Collections 199

Collections 11

This section describes collections, Dylans aggregate data structures.

An overview of collections is given in Chapter 8, “Collections.”

Collections 11

<collection> [Open Abstract Class] 11

The class of collections, aggregate data structures.

Superclasses: <object>

Init-keywords: None.

Description: The class of collections.

<collection> is the root class of the collection class hierarchy. It provides a
set of basic operations on all collections.

The element type of <collection> is indefinite ⇐ <object>.

Table 11-14 Methods on singleton(<integer>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

200 Collections

Operations: The class <collection> provides the following operations:

Table 11-15 Functions on <collection>

Function Description Page

do Iterates over one or more collections for
side effect.

315

map Iterates over one or more collections and
collects the results in a freshly allocated
collection.

316

map-as Iterates over one or more collections and
collects the results in a freshly allocated
collection of a specified type.

316

map-into Iterates over one or more collections and
collects the results in an existing mutable
collection.

317

any? Returns the first true value obtained by
iterating over one or more collections.

318

every? Returns true if a predicate returns true
when applied to all corresponding
elements of a set of collections.

319

Table 11-16 Generic Functions on <collection>

Function Description Page

element Returns the collection element associated
with a particular key.

286

key-sequence Returns a sequence containing the keys
of its collection argument.

286

reduce Combines the elements of a collection
and a seed value into a single value by
repeatedly applying a binary function.

320

C H A P T E R 1 1

The Built-In Classes

Collections 201

reduce1 Combines the elements of a collection
into a single value by repeatedly
applying a binary function, using the
first element of the collection as the seed
value.

321

member? Returns true if a collection contains a
particular value.

322

find-key Returns the key in a collection such that
the corresponding collection element
satisfies a predicate.

323

key-test Returns the function used by its
collection argument to compare keys.

285

forward-iteration
-protocol

Returns a group of functions used to
iterate over the elements of a collection.

326

backward-iteratio
n-protocol

Returns a group of functions used to
iterate over the elements of a collection in
reverse order.

328

Table 11-17 Methods on <collection>

Function Description Page

= Compares two objects for equality. 256

empty? Returns true if its argument is empty. 281

size Returns the size of its argument. 281

shallow-copy Returns a copy of its argument. 279

Table 11-18 Methods on singleton(<collection>)

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-16 Generic Functions on <collection> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

202 Collections

Explicit Key Collections 11

<explicit-key-collection> [Open Abstract Class] 11

The class of all collections that are not sequences.

Superclasses: <collection>

Init-keywords: None.

Description: The class of all collections that are not sequences.

This class is disjoint from <sequence> because key-test is inert over the
domain <sequence>.

The element type of <explicit-key-collection> is indefinite ⇐
<object>.

Operations: The class <explicit-key-collection> provides the following operations:

Sequences 11

<sequence> [Open Abstract Class] 11

The class of collections whose keys are consecutive integers starting from zero.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections whose keys are consecutive integers starting from zero.

Table 11-19 Methods on singleton(<explicit-key-collection>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Collections 203

Sequences must be stable under iteration, and the iteration order must match
the order of keys. Thus, the key associated with a sequence’s iteration state can
be determined by keeping a counter in parallel with the iteration state.

The default methods for add, add-new, remove, choose, choose-by,
intersection, union, remove-duplicates, copy-sequence,
concatenate, reverse, and sort all return new sequences that are
instances of the type-for-copy of their primary sequence argument.
However, more specialized methods are permitted to choose a more
appropriate result class; for example, copy-sequence of a range returns
another range, even though the type-for-copy value of a range is the
<list> class.

<sequence> is disjoint from <explicit-key-collection> because of the
inert domain over the function key-test for <sequence>.

The element type of <sequence> is indefinite ⇐ <object>.

Operations: The class <sequence> provides the following operations:

Table 11-20 Functions on <sequence>

Function Description Page

concatenate Returns the concatenation of one or more
sequences in a sequence of a type
determined by the type-for-copy of its
first argument.

311

concatenate-as Returns the concatenation of one or more
sequences in a sequence of a specified
type.

312

first Returns the first element of a sequence. 290

second Returns the second element of a
sequence.

290

third Returns the third element of a sequence. 291

C H A P T E R 1 1

The Built-In Classes

204 Collections

Table 11-21 Generic Functions on <sequence>

Function Page

add Adds an element to a sequence. 296

add! Adds an element to a sequence. 297

add-new Adds a new element to a sequence. 298

add-new! Adds a new element to a sequence. 299

remove Removes an element from a sequence. 300

remove! Removes an element from a sequence. 300

choose Returns those elements of a sequence
that satisfy a predicate.

321

choose-by Returns those elements of a sequence
that correspond to those in another
sequence that satisfy a predicate.

322

intersection Returns the intersection of two sequences. 307

union Returns the union of two sequences. 308

remove-duplicates Returns a sequence without duplicates. 309

remove-duplicates
!

Returns a sequence without duplicates. 310

copy-sequence Returns a freshly allocated copy of some
subsequence of a sequence.

311

replace-subsequen
ce!

Replaces a portion of a sequence with the
elements of another sequence.

313

reverse Returns a sequence with elements in the
reverse order of its argument sequence.

303

reverse! Returns a sequence with elements in the
reverse order of its argument sequence.

304

sort Returns a sequence containing the
elements of its argument sequence,
sorted.

305

C H A P T E R 1 1

The Built-In Classes

Collections 205

Mutable Collections 11

<mutable-collection> [Open Abstract Class] 11

The class of collections that may be modified.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections that may be modified.

sort! Returns a sequence containing the
elements of its argument sequence,
sorted.

306

last Returns the last element of a sequence. 293

subsequence-posit
ion

Returns the position where a pattern
appears in a sequence.

314

Table 11-22 Methods on <sequence>

Function Description Page

= Compares two objects for equality. 256

key-test Returns the function used by its
collection argument to compare keys.

285

Table 11-23 Methods on singleton(<sequence>)

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-21 Generic Functions on <sequence> (continued)

Function Page

C H A P T E R 1 1

The Built-In Classes

206 Collections

Every mutable collection is required to allow modification by implementing
element-setter.

The element type of <mutable-collection> is indefinite ⇐
<object>.

Operations: The class <mutable-collection> provides the following operations:

Table 11-24 Functions on <mutable-collection>

Function Description Page

map-into Iterates over one or more collections and
collects the results in an existing mutable
collection.

317

Table 11-25 Generic Functions on <mutable-collection>

Function Description Page

last-setter Sets the last element of a mutable
sequence.

293

Table 11-26 Methods on <mutable-collection>

Function Description Page

type-for-copy Returns an appropriate type for creating
mutable copies of its argument.

279

Table 11-27 Methods on singleton(<mutable-collection>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Collections 207

<mutable-explicit-key-collection> [Open Abstract Class] 11

The class of explicit-key-collections that can have elements replaced.

Superclasses: <explicit-key-collection> <mutable-collection>

Init-keywords: None.

Description: The class of explicit-key-collections that can have elements replaced.

The element type of <mutable-explicit-key-collection> is
indefinite ⇐ <object>.

Operations: The class <mutable-explicit-key-collection> provides the following
operations:

<mutable-sequence> [Open Abstract Class] 11

The class of sequences that may be modified.

Superclasses: <sequence> <mutable-collection>

Init-keywords: None.

Description: The class of sequences that may be modified.

The element type of <mutable-sequence> is indefinite ⇐ <object>.

Table 11-28 Methods on singleton(<mutable-explicit-key-collection>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

208 Collections

Operations: The following operations are provided on <mutable-sequence>:

Table 11-29 Generic Functions on <mutable-sequence>

Function Description Page

first-setter Sets the first element of a mutable
sequence.

291

second-setter Sets the second element of a mutable
sequence.

292

third-setter Sets the third element of a mutable
sequence.

292

Table 11-30 Methods on <mutable-sequence>

Function Description Page

first-setter Sets the first element of a mutable
sequence.

291

second-setter Sets the second element of a mutable
sequence.

292

third-setter Sets the third element of a mutable
sequence.

292

Table 11-31 Methods on singleton(<mutable-sequence>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Collections 209

Stretchy Collections 11

<stretchy-collection> [Open Abstract Class] 11

The class of collections that may grow or shrink to accomodate adding or
removing elements.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections that may grow or shrink to accomodate adding or
removing elements.

Stretchy collections allow element-setter to be called with a key that is not
present in the collection, expanding the collection as necessary to add a new
element in that case. Each concrete subclass of <stretchy-collection>
must provide or inherit a method for element-setter that behaves as
follows when there is not already an element present for the indicated key:

■ If the class is a subclass of <explicit-key-collection>, adds a new
element to the collection with the indicated key.

■ If the class is a subclass of <sequence>, first calls size-setter on the
key + 1 and the collection to expand the sequence. The key must be a
non-negative integer.

The element type of <stretchy-collection> is indefinite ⇐
<object>.

Operations: The following operations are provided on <stretchy-collection>:

Table 11-32 Methods on singleton(<stretchy-collection>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

210 Collections

Arrays 11

<array> [Open Abstract Instantiable Class] 11

The class of sequences whose elements are arranged according to a Cartesian
coordinate system.

Superclasses: <mutable-sequence>

Init-keywords: The make method on singleton(<array>) accepts the following keyword
arguments. Note that these are not inherited by subclasses of <array>.

dimensions:An instance of <sequence> with elements that are instances of
<integer>. This argument specifies the dimensions of the
array. The size of the sequence specifies the rank (number of
dimensions) of the array, and each integer in the sequence
specifies the size of a dimension. This argument is required.

fill: An instance of <object> specifying an initial value for each
element of the array. The default value is #f.

Description: The class of collections whose elements are arranged according to a Cartesian
coordinate system.

An array element is referred to by a (possibly empty) series of indices. The
length of the series must equal the rank of the array. Each index must be a
non-negative integer less than the corresponding dimension. An array element
may alternatively be referred to by an integer, which is interpreted as a
row-major index.

Arrays typically use space efficient representations, and the average time
required to access a randomly chosen element is typically sublinear to the
number of elements.

Whe a multi-dimensional array is created, the concrete class that is actually
instantiated cannot be any of the specified subclasses of <array>, which are all
one-dimensional. Every implementation must have one or more concrete
subclasses of <array> that are used for this purpose. These concrete
subclasses have no specified names, and their names are not exported by the
Dylan module.

C H A P T E R 1 1

The Built-In Classes

Collections 211

When a single-dimensional array is created, the array created will be an
instance of <vector>.

Each concrete subclass of <array> must either provide or inherit
implementations of the functions element, element-setter, and
dimensions.

The element type of <array> is indefinite ⇐ <object>.

Operations: The class <array> provides the following operations::

Table 11-33 Generic Functions on <array>

Function Description Page

rank Returns the number of dimensions of an array. 283

row-major-index Returns the row-major-index position of an
array element.

284

aref Returns the array element indicated by a set of
indices.

289

aref-setter Sets the array element indicated by a set of
indices.

289

dimensions Returns the dimensions of an array. 284

dimension Returns the size of a specified dimension of an
array.

285

Table 11-34 Methods on <array>

Function Description Page

size Returns the size of its argument. 281

rank Returns the number of dimensions of an array. 283

row-major-index Returns the row-major-index position of an
array element.

284

C H A P T E R 1 1

The Built-In Classes

212 Collections

Vectors 11

<vector> [Open Abstract Instantiable Class] 11

The class of arrays of rank one (i.e. exactly one dimension).

Superclasses: <array>

Init-keywords: The make method on singleton(<vector>) accepts the following keyword
arguments. Note that these are not inherited by subclasses of <vector>.

size: An instance of <integer> specifying the size of the vector.

fill: An instance of <object> specifying an initial value for each
element of the vector. The default value is #f.

Description: The class of one-dimensional arrays.

<vector> has no direct instances; calling make on <vector> returns an
instance of <simple-object-vector>.

aref Returns the array element indicated by a set of
indices.

289

aref-setter Sets the array element indicated by a set of
indices.

289

dimension Returns the size of a specified dimension of an
array.

285

Table 11-35 Methods on singleton(<array>)

Function Description Page

make Returns a general instance of its first argument. 246

limited Returns a limited subtype of a class. 251

Table 11-34 Methods on <array> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

Collections 213

Each concrete subclass of <vector> must either provide or inherit an
implementation of size that shadows the method provided by <array>.

The element type of <vector> is indefinite ⇐ <object>.

Operations: The class <vector> provides the following operations:

<simple-vector> [Sealed Abstract Instantiable Class] 11

A predefined subclass of <vector> which provides an efficient
implementation of fixed-length vectors.

Superclasses: <vector>

Table 11-36 Constructors for <vector>

Function Description Page

vector Creates and returns a freshly allocated
vector.

254

Table 11-37 Methods on <vector>

Function Description Page

dimensions Returns the dimensions of an array. 284

element Returns the collection element associated
with a particular key.

286

Table 11-38 Methods on singleton(<vector>)

Function Description Page

make Returns a general instance of its first
argument.

246

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

214 Collections

Init-keywords: The make method on singleton(<simple-vector>) accepts the following
keyword arguments. Note that these are not inherited by subclasses of
<simple-vector>.

size: An instance of <integer> specifying the size of the vector.

fill: An instance of <object> specifying an initial value for each
element of the vector. The default value is #f.

Description: The class of simple and efficient vectors.

The class <simple-vector> provides a constant time implementation for the
element and element-setter functions. This property is shared by all
subtypes of <simple-vector>.

Calling make on a <simple-vector> returns an instance of
<simple-object-vector>. The size of a simple vector cannot be changed
after the simple vector has been created.

Vector literals (created with the #[…] syntax) are general instances of
<simple-vector>.

The element type of <simple-vector> is indefinite ⇐ <object>.

The class <simple-object-vector> and the type
limited(<simple-vector>, of: <object>) have exactly the same
instances, but neither is a subtype of the other. The relationship between them
is simply that the make method for the type returns an instance of the class.

Operations: The class <simple-vector> provides the following operations:

Table 11-39 Methods on <simple-vector>

Function Description Page

element Returns the collection element associated
with a particular key.

286

element-setter Sets the collection element associated with a
particular key.

287

C H A P T E R 1 1

The Built-In Classes

Collections 215

<simple-object-vector> [Sealed Instantiable Class] 11

The class of simple vectors that may have elements of any type.

Superclasses: <simple-vector>

Init-keywords: The class <simple-object-vector> supports the following init-keywords:

size: An instance of <integer> specifying the size of the vector. The
default value is 0.

fill: An instance of <object> specifying the initial value for each
element. The default value is #f.

Description: The class <simple-object-vector> represents vectors that may have
elements of any type. It provides a constant time implementation for the
element and element-setter functions.

The element type of <simple-object-vector> is <object>.

Operations: None.

<stretchy-vector> [Open Abstract Instantiable Primary Class] 11

The class of vectors that are stretchy.

Superclasses: <vector> <stretchy-collection>

Init-keywords: The class <stretchy-vector> supports the the following init-keywords:

size: An instance of <integer> specifying the initial size of the
stretchy vector. The default value is 0.

fill: An instance of <object> specifying the initial value for each
element. The default value is #f.

Table 11-40 Methods on singleton(<simple-vector>)

Function Description Page

make Returns a general instance of its first argument. 246

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

216 Collections

Description: The class of vectors that are stretchy.

Because <stretchy-vector> is abstract and instantiable but has no specified
subclasses, every implementation must provide one or more concrete subclass
to instantiate. These concrete subclasses have no specified names, and their
names are not exported by the Dylan module.

The element type of <simple-vector> is indefinite ⇐ <object>.

Operations: The class <stretchy-vector> provides the following operations:

Deques 11

<deque> [Open Abstract Instantiable Primary Class] 11

The class of double-ended queues.

Superclasses: <mutable-sequence> <stretchy-collection>

Init-keywords: The class <deque> supports the following init-keywords:

size: An instance of <integer> specifying the initial size of the
deque. The default value is 0.

Table 11-41 Methods on <stretchy-vector>

Function Description Page

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300

Table 11-42 Methods on singleton(<stretchy-vector>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Collections 217

fill: An instance of <object> specifying the initial value for each
element. The default value is #f.

Description: A subclass of sequence that supports efficient forward and backward iteration,
and efficient addition and removal of elements from the beginning or end of
the sequence.

Because <deque> is abstract and instantiable but has no specified subclasses,
every implementation must provide one or more concrete subclass to
instantiate. These concrete subclasses have no specified names, and their names
are not exported by the Dylan module.

The element type of <deque> is indefinite ⇐ <object>.

Operations: The class <deque> provides the following operations:

Table 11-43 Generic Functions on <deque>

Function Description Page

push Adds an element to the front of a deque. 302

pop Removes and returns the first element of
a deque.

302

push-last Adds an element to the end of a deque. 302

pop-last Removes and returns an element from
the end of a deque.

303

Table 11-44 Methods on <deque>

Function Description Page

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300

C H A P T E R 1 1

The Built-In Classes

218 Collections

Lists 11

Lists are constructed by linking together instances of <pair>. The head of a list
contains an element, and the tail of the list contains a pointer to the next pair in
the list. The list ends when the tail of a pair contains something besides another
pair.

A proper list has a final pair with a tail containing the empty list.

An improper list does not have a final pair with a tail containing the empty
list, either because the tail of its final pair is not the empty list, or because the
list is circular and thus does not have a final pair. Except when their behavior
on improper lists is documented explicitly, collection or sequence functions are
not guaranteed to return an answer when an improper list is used as a
collection or a sequence. At the implementation’s option, these functions may
return the correct result, signal a <type-error>, or (in the case of a circular
list) fail to return.

When treated as a collection, the elements of a list are the heads of successive
pairs in the list.

<list> [Sealed Instantiable Abstract Class] 11

The class of linked lists.

Superclasses: <mutable-sequence>

Init-keywords: The make method on singleton(<list>) accepts the following keyword
arguments. Note that these are not inherited by subclasses of <list>.

size: An instance of <integer> specifying the size of the list. The
default value is 0.

fill: An instance of <object> specifying the initial value for each
element. The default value is #f.

Table 11-45 Methods on singleton(<deque>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Collections 219

Description: The class of linked lists.

The <list> class is partitioned into two concrete subclasses, <pair> and
<empty-list>. Calling make on <list> will return a linked list made from
pairs and terminated with the empty list.

The element type of <list> is <object>.

Operations: The class <list> provides the following operations:

Table 11-46 Constructors for <list>

Function Description Page

list Creates and returns a freshly allocated
list.

249

pair Creates and returns a freshly allocated
pair.

249

Table 11-47 Functions on <list>

Function Description Page

head Returns the head of a list. 294

tail Returns the tail of a list. 294

Table 11-48 Methods on <list>

Function Description Page

size Returns the size of its argument. 281

= Compares two objects for equality. 256

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300

C H A P T E R 1 1

The Built-In Classes

220 Collections

<pair> [Sealed Instantiable Class] 11

The class of lists that can have new values assigned to their heads and tails.

Superclasses: <list>

Init-keywords: None.

Description: The class of lists that can have new values assigned to their heads and tails.

The element type of <pair> is <object>.

Operations: The following operations are provided on <pair>:

<empty-list> [Sealed Instantiable Class] 11

The class with only one instance, the empty list.

Table 11-49 Methods on singleton(<list>)

Function Description Page

make Returns a general instance of its first
argument.

246

Table 11-50 Functions on <pair>

Function Description Page

head-setter Sets the head of a pair. 295

tail-setter Sets the tail of a pair. 295

Table 11-51 Constructors for <pair>

Function Description Page

pair Creates and returns a freshly allocated
pair.

249

C H A P T E R 1 1

The Built-In Classes

Collections 221

Superclasses: <list>

Init-keywords: None.

Description: The class <empty-list> has only one instance, the empty list. The empty list
is a direct instance of <empty-list> and an indirect instance of <list>.
Note that <empty-list> is not == to singleton (#()).

The element type of <empty-list> is <object>.

Operations: None.

Ranges 11

<range> [Open Abstract Instantiable Primary Class] 11

The class of arithmetic sequences.

Superclasses: <sequence>

Init-keywords: The class <range> supports the the following init-keywords:

from: An instance of <real> specifying the first value in the range.
The default value is 0.

by: An instance of <real> specifying the step between consecutive
elements of the range. The default value is 1.

to: An instance of <real> specifying an inclusive bound for the
range. If by: is positive, the range will include numbers up to
and including this value. If by: is negative, the range will
include numbers down to to and including this value.
to: cannot be specified with above: or below:.

above: An instance of <real> specifying an exclusive lower bound for
the range. The range will only include numbers above this
value, regardless of the sign of by:.
above: cannot be specified with to: or below:.

C H A P T E R 1 1

The Built-In Classes

222 Collections

below: An instance of <real> specifying an exclusive upper bound for
the range. The range will only include numbers below this
value, regardless of the sign of by:.
below: cannot be specified with to: or above:.

size: An instance of <integer> specifying the size of the range.

Description: The class <range> is used for creating sequences of numbers. Ranges may be
infinite in size, and may run from higher numbers to lower numbers.

Because <range> in abstract and instantiable but has no specified subclasses,
every implementation must provide one or more concrete subclass to
instantiate. These concrete subclasses have no specified names, and their names
are not exported by the Dylan module.

The element type of <range> is indefinite ⇐ <real>.

Operations: The class <range> provides the following operations:

Table 11-52 Methods on <range>

Function Description Page

member? Returns true if a collection contains a
particular value.

322

size Returns the size of its argument. 281

copy-sequence Returns a freshly allocated copy of some
subsequence of a sequence.

311

= Compares two objects for equality. 256

reverse Returns a sequence with elements in the
reverse order of its argument sequence.

303

reverse! Returns a sequence with elements in the
reverse order of its argument sequence.

303

intersection Returns the intersection of two sequences. 307

type-for-copy Returns an appropriate type for creating
mutable copies of its argument.

279

C H A P T E R 1 1

The Built-In Classes

Collections 223

Strings 11

<string> [Open Abstract Instantiable Class] 11

The class of sequences with elements that are characters.

Superclasses: <mutable-sequence>

Init-keywords: The class <string> supports the following init-keywords:

size: An instance of <integer> specifying the size of the string. The
default value is 0.

fill: An instance of <character> specifying the initial value for
each element. The default value is ‘ ‘ (space).

Description: The class <string> is used for holding sequences of characters.

<string> has no direct instances; calling make on <string> will return an
instance of a concrete subclass of <string>.

The element type of <string> is indefinite ⇐ <character>.

Operations: The class <string> provides the following operations:

Table 11-53 Methods on singleton(<range>)

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-54 Methods on <string>

Function Description Page

< Returns true if its first operand is less
than its second operand.

258

as-lowercase Coerces an object to lowercase. 278

C H A P T E R 1 1

The Built-In Classes

224 Collections

<byte-string> [Sealed Instantiable Class] 11

The class of vectors with elements that are eight-bit characters.

Superclasses: <string> <vector>

Init-keywords: The class <byte-string> supports the following init-keywords:

size: An instance of <integer> specifying the size of the byte string.
The default value is 0.

fill: An instance of <character> specifying the initial value for
each element. The default value is ‘ ‘ (space).

Description: The class <byte-string> represents strings with elements that are eight bit
characters. It provides constant time element and element-setter
methods.

The element type of <byte-string> is indefinite ⇐ K2 (where K2 is a
subtype of <character>).

as-lowercase! Coerces an object to lowercase in place. 278

as-uppercase Coerces an object to uppercase. 277

as-uppercase! Coerces an object to uppercase in place. 277

Table 11-55 Methods on singleton(<string>)

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-54 Methods on <string> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

Collections 225

Operations: The class <byte-string> provides the following operations:

<unicode-string> [Sealed Instantiable Class] 11

The class of vectors with elements that are sixteen-bit Unicode characters.

Superclasses: <string> <vector>

Init-keywords: The class <unicode-string> supports the following init-keywords:

size: An instance of <integer> specifying the size of the unicode
string. The default value is 0.

fill: An instance of <character> specifying the initial value for
each element. The default value is ‘ ‘ (space).

Description: The class <unicode-string> represents strings with elements that are
sixteen bit Unicode characters. It provides constant time element and
element-setter methods.

The element type of <unicode-string> is indefinite ⇐ K1 (where K1 is
a subtype of <character>).

Table 11-56 Methods on <byte-string>

Function Description Page

element Returns the collection element associated
with a particular key.

286

element-setter Sets the collection element associated
with a particular key.

287

C H A P T E R 1 1

The Built-In Classes

226 Collections

Operations: The class <unicode-string> provides the following operations:

Tables 11

Also called a hash table, a table is an unordered mapping between arbitrary
keys and elements. Tables are the only predefined collections that are unstable
under iteration.

Tables are stretchy in that they allow the addition and removal of keys.
<table> and its subclasses are the only predefined classes that are stretchy but
are not stretchy sequences.

For a complete description of tables, see “Tables” on page 120.

<table> [Open Abstract Instantiable Primary Class] 11

The class of tables (also known as hash tables).

Superclasses: <mutable-explicit-key-collection> <stretchy-collection>

Init-keywords: The class <table> supports the following init-keyword:

size: An instance of <integer>. If specified, this value provides a hint
to the implementation as to the expected number of elements to
be stored in the table, which might be used to control how much
space to initially allocate for the table. The default value is
unspecified.

Description: The class <table> is the only predefined instantiable subclass of
<explicit-key-collection>.

Table 11-57 Methods on <unicode-string>

Function Description Page

element Returns the collection element associated
with a particular key.

286

element-setter Sets the collection element associated
with a particular key.

287

C H A P T E R 1 1

The Built-In Classes

Collections 227

Every concrete subclass of <table> must provide or inherit a method for
table-protocol. For details, see “Tables” on page 120.

<table> has no direct instances; calling make on <table> will return an
instance of <object-table>.

The element type of <table> is indefinite ⇐ <object>.

Operations: The class <table> provides the following operations:

Table 11-58 Generic Functions on <table>

Function Description Page

table-protocol Returns functions used to implement the
iteration protocol for a tables.

329

Table 11-59 Methods on <table>

Function Description Page

forward-iteration
-protocol

Returns a group of functions used to
iterate over the elements of a collection.

326

table-protocol Returns functions used to implement the
iteration protocol for a tables.

329

remove-key! Modifies an explicit key collection so it
no longer has a particular key.

324

element Returns the collection element associated
with a particular key.

286

element-setter Sets the collection element associated
with a particular key.

287

size Returns the size of its argument. 281

key-test Returns the function used by its
collection argument to compare keys.

285

C H A P T E R 1 1

The Built-In Classes

228 Collections

<object-table> [Open Abstract Instantiable Class] 11

The class of tables that compare keys using ==.

Superclasses: <table>

Init-keywords: None.

Description: Calling make on <table> will return a general instance of <object-table>.
Because <object-table> is abstract and instantiable but has no specified
subclasses, every implementation must provide one or more concrete
subclasses to instantiate. These concrete subclasses have no specified names,
and their names are not exported by the Dylan module.

The element type of <object-table> is indefinite ⇐ <object>.

Operations: The class <object-table> provides the following operations:

Table 11-60 Methods on singleton(<table>)

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-61 Methods on <object-table>

Function Description Page

table-protocol Returns functions used to implement the
iteration protocol for a tables.

329

Table 11-62 Methods on singleton(<object-table>)

Function Description Page

limited Returns a limited subtype of a class. 251

C H A P T E R 1 1

The Built-In Classes

Functions 229

Functions 11

Functions 11

<function> [Sealed Abstract Class] 11

The class of objects that can be applied to arguments.

Superclasses: <object>

Init-keywords: None.

Description: All functions are instances of <function>. Functions are described in Chapter
6, “Functions.”

Operations: The class <function> provides the following operations:

Table 11-63 Functions on <function>

Function Description Page

compose Returns the composition of one or more
functions.

334

complement Returns a function that expresses the
complement of a predicate.

335

disjoin Returns a function that expresses the
disjunction of one or more predicates.

335

conjoin Returns a function that expresses the
conjunction of one or more predicates.

336

curry Returns a function based on an existing
function and a number of default initial
arguments.

336

C H A P T E R 1 1

The Built-In Classes

230 Functions

rcurry Returns a function based on an existing
function and a number of default final
arguments.

337

function-speciali
zers

Returns the specializers of a function. 341

function-argument
s

Returns information about the
arguments accepted by a function.

342

function-return-v
alues

Returns information about the values
returned by a function.

343

applicable-method
?

Tests if a function is applicable to sample
arguments.

343

apply Applies a function to arguments. 339

do Iterates over one or more collections for
side effect.

315

map Iterates over one or more collections and
collects the results in a freshly allocated
collection.

316

map-as Iterates over one or more collections and
collects the results in a freshly allocated
collection of a specified type.

316

map-into Iterates over one or more collections and
collects the results in an existing mutable
collection.

317

any? Returns the first true value obtained by
iterating over one or more collections.

318

every? Returns true if a predicate returns true
when applied to all corresponding
elements of a set of collections.

319

reduce Combines the elements of a collection
and a seed value into a single value by
repeatedly applying a binary function.

320

Table 11-63 Functions on <function> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

Functions 231

Generic Functions 11

<generic-function> [Sealed Instantiable Class] 11

The class of functions that are made up of a number of individual methods.

Superclasses: <function>

Init-keywords: The class <generic-function> supports the following init-keywords:

required: An instance of <number> or <sequence>.

This argument represents the required arguments that the
generic function accepts. If a sequence is supplied, the size of
the sequence is the number of required arguments, and the
elements of the sequence are the specializers. If a number is
supplied, it is the number of required arguments, and the

reduce1 Combines the elements of a collection
into a single value by repeatedly
applying a binary function, using the
first element of the collection as the seed
value.

321

find-key Returns the key in a collection such that
the corresponding collection element
satisfies a predicate.

323

replace-elements! Replaces collection elements that satisfy
a predicate.

324

choose Returns those elements of a sequence
that satisfy a predicate.

321

choose-by Returns those elements of a sequence
that correspond to those in another
sequence that satisfy a predicate.

322

do-handlers Applies a function to all dynamically
active handlers.

351

Table 11-63 Functions on <function> (continued)

Function Description Page

C H A P T E R 1 1

The Built-In Classes

232 Functions

specializers default to <object>. If the argument is not
supplied, or the supplied argument is neither a sequence nor a
non-negative integer, an error is signaled.

rest?: An instance of <boolean>.

A true value indicates that the generic function accepts a
variable number of arguments. The default value is #f.

key: #f or an instance of <collection> whose elements are
keywords.

If the value is a collection, then the generic function accepts
keyword arguments, and the collection specifies the set of
mandatory keywords for the generic function. A value of #f
indicates that the generic function does not accept keyword
arguments. The default value is #f.

all-keys?: An instance of <boolean>.

A true value indicates that the generic function accepts all
keyword arguments. The default value is #f.

Description: The class of generic functions. Generic functions are described in Chapter 6,
“Functions.”

The arguments describe the shape of the generic function’s parameter list, and
thereby control which methods can be added to the generic function. See the
section “Kinds of Parameter Lists” on page 84 and the section “Parameter List
Congruency” on page 91 for the implications of these choices.

An error is signaled if the value of rest?: is true and the value of key: is a
collection. While a method parameter list may specify both #rest and #key, a
generic function parameter list cannot.

An error is signaled if the value of all-keys?: is true and the value of key:
is #f.

A new generic function initially has no methods. An error will be signaled if a
generic function is called before methods are added to it. Once a generic
function is created, you can give it behavior by adding methods to it with
add-method or define method.

Generic functions are not usually created by calling make directly. Most often
they are created by define generic or implicitly by define method.

C H A P T E R 1 1

The Built-In Classes

Functions 233

Operations: The class <generic-function> provides the following operations:

Methods 11

<method> [Sealed Class] 11

The class of functions that are applicable to arguments of a specified type.

Superclasses: <function>

Init-keywords: None.

Description: The class of methods. Methods are described in Chapter 6, “Functions.”

Table 11-64 Functions on <generic-function>

Function Description Page

generic-function-
methods

Returns the methods of a generic
function.

340

add-method Adds a method to a generic function. 340

generic-function-
mandatory-keyword
s

Returns the mandatory keywords of a
generic function, if any.

341

sorted-applicable
-methods

Returns all the methods in a generic
function that are applicable to sample
arguments, sorted in order of specificity.

344

find-method Returns the method in a generic function
that has particular specializers.

345

remove-method Removes a method from a generic
function.

345

C H A P T E R 1 1

The Built-In Classes

234 Conditions

Operations: The class <method> provides the following operations:

Conditions 11

Conditions 11

<condition> [Open Abstract Class] 11

The class of objects used by the condition system to connect a signaler with an
appropriate handler.

Superclasses: <object>

Init-keywords: None.

Description: The class of condition objects. A complete description of conditions is given in
Chapter 7, “Conditions.”

Table 11-65 Functions on <method>

Function Description Page

add-method Adds a method to a generic function. 340

remove-method Removes a method from a generic
function.

345

C H A P T E R 1 1

The Built-In Classes

Conditions 235

Operations: The class <condition> provides the following operations::

Table 11-66 Functions on <condition>

Function Description Page

signal Signals a condition. 346

error Signals a non-recoverable error. 346

cerror Signals a correctable error. 347

break Invokes the debugger. 348

Table 11-67 Generic functions on <condition>

Function Description Page

default-handler Called if no dynamic handler handles a
condition.

349

return-query Called to query the user and return. 350

return-allowed? Returns true if a condition’s recovery
protocol allows returning values.

351

return-descriptio
n

Returns a description of a condition’s
returned values.

352

Table 11-68 Methods on <condition>

Function Description Page

default-handler Called if no dynamic handler handles a
condition.

349

C H A P T E R 1 1

The Built-In Classes

236 Conditions

Serious Conditions 11

<serious-condition> [Open Abstract Class] 11

The class of conditions that cannot safely be ignored.

Superclasses: <condition>

Init-keywords: None.

Description: The class of conditions that cannot safely be ignored.

Operations: The following operations are defined on <serious-condition>.:

Errors 11

<error> [Open Abstract Class] 11

The class of conditions that represent something invalid about the program.

Superclasses: <serious-condition>

Init-keywords: None.

Description: The class of serious conditions that represent program errors.

<error> is distinct from <serious-condition> so one can establish a
handler for errors that does not also trap unpredictable environmental
exceptions such as network problems.

Table 11-69 Methods on <serious-condition>

Function Description Page

default-handler Called if no dynamic handler handles a
condition.

349

C H A P T E R 1 1

The Built-In Classes

Conditions 237

Operations: None.

<simple-error> [Sealed Instantiable Class] 11

The class of error conditions that consist of just an error message constructed
from a format string and arguments.

Superclasses: <error>

Init-keywords: format-string:
An instance of <string>. A format string describing the error.

format-arguments:
An instance of <sequence>. Format arguments to splice into
the format string to describe the error.

Description: The class of error conditions that consist of just an error message constructed
from a format string and arguments.

The recovery protocol of <simple-error> is empty.

Operations: The class <simple-error> provides the following operations:

<type-error> [Sealed Instantiable Class] 11

The class of error conditions generated by type checks.

Superclasses: <error>

Init-keywords: value: An instance of <object>. The object whose type was checked.

Table 11-70 Functions on <simple-error>

Function Description Page

condition-format-
string

Returns the format string of a simple
condition.

352

condition-format-
arguments

Returns the format arguments of a
simple condition.

353

C H A P T E R 1 1

The Built-In Classes

238 Conditions

type: An instance of <type>. The type which was expected. The error
was signaled because the object was not of this type.

Description: The class of errors indicating that an object was not of the expected type.

The recovery protocol is empty.

Operations: The class <type-error> provides the following operations::

<sealed-object-error> [Sealed Class] 11

The class of errors that are generated by sealing violations.

Superclasses: <error>

Init-keywords: None.

Description: The class of errors that indicate the violation of a sealing restriction.

Operations: None.

Warnings 11

<warning> [Abstract Class] 11

The class of conditions that are interesting to users but can safely be ignored.

Superclasses: <condition>

Table 11-71 Functions on <type-error>

Function Description Page

type-error-value Returns the value which was not of the
expected type.

353

type-error-expect
ed-type

Returns the expected type of the type
check that led to the type error.

353

C H A P T E R 1 1

The Built-In Classes

Conditions 239

Init-keywords: None.

Operations: The following operations are defined on <warning>:

Description: The class of conditions that can be safely ignored.

There is a default handler for <warning> that displays the warning in a
user-interface dependent way and then returns #f. The recovery protocol is
that any value can be returned and will be ignored.

<simple-warning> [Sealed Instantiable Class] 11

A default class of warnings which are described by a warning string.

Superclasses: <warning>

IInit-keywords: format-string:
An instance of <string>. A format string describing the
warning.

format-arguments:
An instance of <sequence>. Format arguments to splice into
the format string to describe the warning.

Description: The class of warnings described by a format string and arguments.

The recovery protocol is that any value can be returned and will be ignored.

Table 11-72 Methods on <warning>

Function Description Page

default-handler Called if no dynamic handler handles a
condition.

349

C H A P T E R 1 1

The Built-In Classes

240 Conditions

Operations: The class <simple-warning> provides the following operations:

Restarts 11

<restart> [Open Abstract Class] 11

The class of conditions used for restarting a computation.

Superclasses: <condition>

Init-keywords: condition: #f or an instance of <condition>. This argument is accepted
and ignored by <restart>; some subclasses save the value of
this initialization argument and use it to associate a restart with
a particular condition from which the restart can recover. No
such subclasses are defined as part of the language. Other
restarts do not care; they can recover from any condition.

Description: The class of conditions used to correct an unusual situation.

There is a default handler for <restart> that signals an error reporting an
attempt to use a restart for which no restart handler was established. The
recovery protocol concept is not applicable to restarts.

Table 11-73 Functions on <simple-warning>

Function Description Page

condition-format-
string

Returns the format string of a simple
condition.

352

condition-format-
arguments

Returns the format arguments of a
simple condition.

353

C H A P T E R 1 1

The Built-In Classes

Conditions 241

Operations: The class <restart> provides the following operations:

<simple-restart> [Sealed Instantiable Class] 11

A default class of restarts.

Superclasses: <restart>

Init-keywords: format-string:
An instance of <string>. A format string describing the restart.

format-arguments:
An instance of <sequence>. Format arguments to splice into
the format string to describe the restart.

Description: A default class of restarts.

Typical implementations will use the format string and format arguments to
produce a description of the restart.

Table 11-74 Generic functions on <restart>

Function Description Page

restart-query Called to query the user and restart. 350

Table 11-75 Methods on <restart>

Function Description Page

default-handler Called if no dynamic handler handles a
condition.

349

C H A P T E R 1 1

The Built-In Classes

242 Conditions

Operations: The class <simple-restart> provides the following operations:

Aborts 11

<abort> [Sealed Instantiable Class] 11

The class of conditions used to terminate a computation.

Superclasses: <restart>

Init-keywords: None.

Description: The class of conditions used to terminate a computation.

Handlers are expected to terminate execution of the current application
command, or similar unit of execution, and return control to something like an
application command loop. This is comparable to command-period on the
Macintosh. The exact details of this feature depend on the particular
environment, of course, but signaling an instance of <abort> is a uniform way
to “get out.”

Operations: None.

Table 11-76 Functions on <simple-warning>

Function Description Page

condition-format-
string

Returns the format string of a simple
condition.

352

condition-format-
arguments

Returns the format arguments of a
simple condition.

353

C H A P T E R 1 2

Contents

243

Contents

Figure 12-0
Listing 12-0
Table 12-0

12 The Built-In Functions

Overview 245
Constructing and Initializing Instances 246

General Constructor 246
Initialization 247
Specific Constructors 249

Equality and Comparison 254
Not and Identity 255
Equality Comparisons 255
Magnitude Comparisons 258

Arithmetic Operations 261
Properties 262
Arithmetic Operations 264

Coercing and Copying Objects 274
General Coercion Function 275
Coercing Case 277
Copying Objects 279

Collection Operations 281
Collection Properties 281
Selecting Elements 286
Adding and Removing Elements 296
Reordering Elements 303
Set Operations 307
Subsequence Operations 311
Mapping and Reducing 315
The Iteration Protocol 326

Reflective Operations on Types 331

This document was created with FrameMaker 4.0.4

C H A P T E R 1 2

244

Contents

Functional Operations 334
Function Application 339
Reflective Operations on Functions 340
Operations on Conditions 346

Signaling Conditions 346
Handling Conditions 349
Introspection on Conditions 351

C H A P T E R 1 2

Overview

245

The Built-In Functions 12

Overview 12

This chapter contains an entry for each function defined by Dylan.

The functions described below are annotated either as an

open generic
function

 or as a

function

.

A function specified as an open generic function can be extended through the
addition of programmer defined methods. The signature of the generic
function constrains which methods can be added through the congruency rules
described on page 91. The signature does not imply a set of predefined
methods. For example, the signature of

+

 is

(<object>, <object>)

, but
the predefined methods on

+

 only cover subtypes of

<number>

. Particular
behavior of the function is given in its description and in the description of its
methods.

A function specified as a function cannot portably be extended through the
addition of methods. Implementations are free to implement these functions as
open generic functions, but programs that take advantage of such liberality will
not be portable. The signature of such a function specifies the type domain of
the function, but does not necessarily imply that the function is applicable to all
instances of the types. The exact behavior of the function is given in its
description.

Implementations are allowed to define these generic functions and functions
with signatures that are less restrictive than those given below. However,
programs that take advantage of this liberality will not be portable.

Where a sealed domain is specified, implementations are free to seal the
domain or leave the domain unsealed. Portable programs should not rely on
the domain being unsealed.

When a method is specified, it describes the behavior of a generic function
when applied to arguments of particular types. It does not imply that this
behavior is implemented by a single method.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 2

The Built-In Functions

246

Constructing and Initializing Instances

Constructing and Initializing Instances 12

General Constructor 12

make

[Open Generic Function] 12

Returns a general instance of its first argument.

Signature:

make

type

 #rest

supplied-init-args

 #key #all-keys

⇒

instance

Arguments:

type

An instance of

<type>

.

supplied-init-args

Keyword/argument pairs.

Values:

instance

An

<object>

, which must be a general instance of

type

.

Description:

Returns an instance of

type

, with characteristics specified by keyword
arguments.

The

instance

 returned is guaranteed to be a general instance of

type

 but not
necessarily a direct instance of

type

. This liberality allows

make

 to be called on
an abstract class or other type; it can instantiate and return a direct instance of
one of the concrete subtypes of the abstract class or type.

The

instance

 returned may or may not be newly allocated. If a new instance is
allocated,

make

 will call

initialize

 on the instance before returning it.

Programmers may customize

make

 for particular classes by defining methods
specialized by singleton specializers. These methods may obtain the default

make

 behavior, if desired, by calling next-method.

Note that the

<class>

 method on

make

 returns a newly allocated direct
instance of its first argument.

C H A P T E R 1 2

The Built-In Functions

Constructing and Initializing Instances

247

make

class

#rest

supplied-init-args

 #key

⇒

 object

[G.F. Method] 12

The method on

<class>

 creates an instance of

class

, calls

initialize

 on the
instance, and then returns the instance. An error is signaled if

class

 is abstract.

A complete description of this method and its role in the initialization protocol
is given in “Instance Creation and Initialization” on page 63.

make

(singleton <array>)

 #key

dimensions fill

⇒

 array

[G.F. Method] 12

A method on

singleton(<array>)

 accepts

dimensions

 and

fill

 keyword
arguments, and instantiates a concrete subclass of

<array>

. These arguments
are described with the <array> class on page 210.

make

(singleton <vector>)

 #key

size fill

⇒

 simple-object-vector

[G.F. Method]

make

(singleton <simple-vector>)

 #key

size fill

⇒

 simple-object-vector

[G.F. Method] 12

Methods on

singleton(<vector>)

 and

singleton(<simple-vector>)

accept

size

 and

fill

 keyword arguments, and return an instance of

<simple-object-vector>

. These arguments are described with the

<vector>

 class on page 212 and with the

<simple-vector>

 class on
page 213.

make

(singleton <list>)

 #key

size fill

⇒

 list

[G.F. Method] 12

A method on

singleton(<list>)

 accepts

size

 and

fill

 keyword arguments.
These arguments are described with the

<list>

 class on page 218.

Initialization 12

initialize

[Open Generic Function] 12

Performs instance initialization that cannot be specified declaratively by a class
definition.

Signature:

initialize

instance

 #key #all-keys

⇒

 #rest objects

C H A P T E R 1 2

The Built-In Functions

248 Constructing and Initializing Instances

Arguments: instance An instance of <object>.

Values: objects Instances of <object>. The return values are ignored by make.

Description: Provides a way for users to handle initialization of instances which cannot be
expressed simply by init specifications. This is typically needed when a
computation requires inputs from multiple initialization arguments or slot
values, or a single computation needs to be used to initialize multiple slots.

By convention, all initialize methods should call next-method very early,
to make sure that any initializations from less specific classes are performed
first.

The initialize generic function permits all keywords and requires none. It
does this because the keyword argument checking is performed by the default
method on make.

initialize object #key ⇒ object [G.F. Method] 12

This method does nothing. It is present so that it is always safe for
initialize methods to call next method, and so that it is safe for the default
make method to call initialize.

slot-initialized? [Open Generic Function] 12

Tests whether a slot has been initialized

Signature: slot-initialized? instance getter ⇒ boolean

Arguments: instance An instance of of <object>.

getter An instance of <generic-function>.

Values: boolean An instance of <boolean>.

Description: Returns true if the slot in instance that would be accessed by the getter generic
function is initialized. If the slot is not initialized, then false is returned.

slot-initialized? will signal an error if the getter does not access a slot in
the instance.

C H A P T E R 1 2

The Built-In Functions

Constructing and Initializing Instances 249

To support slot-initialized? for a virtual slot, programmers must define
a method for slot-initialized? which shares a protocol with the getter of
the slot.

Specific Constructors 12

list [Function] 12

Creates and returns a freshly allocated list.

Signature: list #rest arguments ⇒ list

Arguments: arguments The elements of the list. Instances of <object>.

Values: list A freshly allocated instance of <list>.

Description: Returns a freshly allocated list containing the arguments, in order.

pair [Function] 12

Creates and returns a freshly allocated pair.

Signature: pair object1,object2 ⇒ pair

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: pair A freshly allocated instance of <pair>.

Description: Creates a freshly allocated pair whose head value is object1 and tail value is
object2.

pair (1, 2)

 ⇒ #(1 . 2)

pair (1, #(2, 3, 4, 5))

 ⇒ #(1, 2, 3, 4, 5)

C H A P T E R 1 2

The Built-In Functions

250 Constructing and Initializing Instances

Note that while the pair returned by pair is freshly allocated, it may be the
beginning of a list, portions of which are not freshly allocated.

define variable *preexisting-list* = list(2, 3, 4)

define variable *new-list* = pair(1, *preexisting-list*)

new-list

 ⇒ #(1, 2, 3, 4)

tail(*new-list*) == *preexisting-list*

 ⇒ #t

third(*new-list*) := ‘x’

new-list

 ⇒ #(1, 2, x, 4)

preexisting-list

 ⇒ #(2, x, 4)

range [Function] 12

Creates and returns a range.

Signature: range #key from to above below by size ⇒ range

Arguments: from An instance of <real>. The default value is 0.

to An instance of <real>.

above An instance of <real>.

below An instance of <real>.

by An instance of <real>. The default value is 0.

size An instance of <real>.

Values: range An instance of <range>.

Description: Creates an instance of <range>. The arguments correspond to the initialization
arguments of <range>, described on page 221.

singleton [Function] 12

Creates and returns a singleton.

C H A P T E R 1 2

The Built-In Functions

Constructing and Initializing Instances 251

Signature: singleton object ⇒ singleton

Arguments: object An instance of <object>.

Values: singleton An instance of <singleton>. The singleton for object.

Description: Returns a singleton for object. singleton(object) is equivalent to
make(<singleton>, object: object). If a singleton for the specified object
already exists, implementations are free to return it rather than allocate a new
singleton.

limited [Function] 12

Returns a limited subtype of a class.

Signature: limited class #key ⇒ type

Arguments: class An instance of <class>.

Values: type An instance of <type>.

Description: Returns a limited subtype of class. The available keyword arguments depend
on the class. Not all classes support limited; the methods for limited are
documented individually.

limited (singleton <integer>) #key min max ⇒ type [G.F. Method] 12

Returns a limited integer type, which is a subtype of <integer> whose
instances are integers greater than or equal to min (if min: is specified) and less
than or equal to max (if max: is specified). If no keyword arguments are
specified, the result type is equivalent to <integer>. Limited integer types
are not instantiable.

limited (singleton <collection>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <explicit-key-collection>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <mutable-collection>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <stretchy-collection>)
 #key of size ⇒ type [G.F. Method]

C H A P T E R 1 2

The Built-In Functions

252 Constructing and Initializing Instances

limited (singleton <mutable-explicit-key-collection>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <sequence>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <mutable-sequence>)
 #key of size ⇒ type [G.F. Method] 12

These methods return uninstantiable limited collection types.

limited (singleton <table>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <object-table>)
 #key of size ⇒ type [G.F. Method] 12

These two methods return types that support a size: initialization keyword
with the same behavior as <table>.

limited (singleton <array>)
 #key of size dimensions ⇒ type [G.F. Method] 12

This method returns a type that supports dimensions: and fill:
initialization keywords with the same behavior as <array>. The default for
fill is #f so if instance?(#f, of) is not true and the product of the
dimensions is nonzero, the fill: initialization keyword is required because the
default would cause a type error.

Instantiating type with a value of dimensions that has one element will return
an instance of limited(<simple-vector>, of: of).

limited (singleton <vector>)
 #key of size ⇒ type [G.F. Method] 12

This method returns the same types as the method on
singleton(<simple-vector>).

limited (singleton <simple-vector>)
 #key of size ⇒ type [G.F. Method]
limited (singleton <stretchy-vector>)
 #key of ⇒ type [G.F. Method]
limited (singleton <deque>)
 #key of ⇒ type [G.F. Method] 12

These three methods return types that support size: and fill: initialization
keywords with the same behavior as the collection-class argument. The default

C H A P T E R 1 2

The Built-In Functions

Constructing and Initializing Instances 253

for fill is #f so if instance?(#f, of) is not true and size is nonzero, the
fill: initialization keyword is required because the default would cause a
type error.

All general instances of <simple-vector> provide a constant time
implementation of element and element-setter.

limited (singleton <string>)
 #key of size ⇒ type [G.F. Method] 12

The of argument must be a subtype of <character>. This method returns a
type that supports size: and fill: initialization keywords with the same
behavior as <string>. The default for fill: is ' ' so if instance?(' ',
of) is not true and size is nonzero, the fill: initialization keyword is required
because the default would cause a type error.

There are no specified subtypes of <character>, except for unions of
singletons, which makes this method rather useless for portable programs.
However the method is provided because there might be useful subtypes of
<character> in a particular implementation or in future versions of Dylan.

limited (singleton <range>)
 #key of ⇒ type [G.F. Method] 12

The of argument must be a subtype of <real>. This method returns a type
that supports from:, to:, below:, above:, by:, and size: initialization
keywords with the same behavior as <range>. Make of this type signals a
<type-error> if any element of the range is not an instance of of.

type-union [Function] 12

Returns the union of two types.

Signature: type-union type1 #rest more-types ⇒ type

Arguments: type1 An instance of <type>.

more-types Instances of <type>.

Values: type An instance of <type>.

C H A P T E R 1 2

The Built-In Functions

254 Equality and Comparison

Description: Returns a type whose instances are the instances of type1 and all the more-types.
The type returned is not instantiable. A complete description of union types is
given in “Union Types” on page 71.

define constant $my-enumerated-type =

 type-union(singleton(#"one"),

 singleton(#"two"),

 singleton(#"three"),

 singleton(#"four"),

 singleton(#"five"))

vector [Function] 12

Creates and returns a freshly allocated vector.

Signature: vector #rest arguments ⇒ vector

Arguments: arguments Instances of <object>.

Values: vector A freshly allocated instance of <simple-object-vector>. Its
elements are the arguments, in order.

Description: Returns a vector whose elements are the arguments, in order.

Equality and Comparison 12

Dylan provides an identity function, as well as a group of equality and
magnitude comparison functions that can be extended for user classes. The
functions ~=, ~==, >, <=, >=, min and max are defined in terms of == or = and
<. By extending the behavior of = and <, programs can extend the behavior of
the other functions.

For the protocol to work, user-defined methods on = and < must preserve the
following properties:

Identity: If (a = b), then (a = b).

Transitivity: If (a < b) and (b < c), then (a < c).

C H A P T E R 1 2

The Built-In Functions

Equality and Comparison 255

If (a = b) and (b = c), then (a = c).

Trichotomy: Exactly one of: (a < b), (a = b), (b < a) always holds
(on the assumption that these two operations are defined for the
objects in question).

In the general case, the behavior of comparison operators when applied to
instances of <complex> is implementation defined. This is to allow
implementations to support IEEE floating point when comparing NaNs.
However, when instances of <rational> and instances of <float> are
compared, it is defined that the instance of <float> is first converted to a
rational and then an exact comparison is performed.

Not and Identity 12

~ [Function] 12

Returns true if its argument is false; otherwise returns false.

Signature: ~ thing ⇒ boolean

Arguments: thing An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if thing is false. Returns false if thing is true.

Equality Comparisons 12

== [Function] 12

Compares two objects for identity.

Signature: object1 == object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

256 Equality and Comparison

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2 are identical. Otherwise, it returns false.

Objects are considered identical if they are computationally equivalent. That is,
there is no way for any possible Dylan program to distinguish them.

At an implementation level, this will usually mean that the objects are pointers
to the same storage or are the same immediate value. An extension is made for
built-in number classes and characters. Because these objects are not mutable
(i.e. cannot be changed), two with the same value will always be the same (and
will thus be indistinguishable to programs).

~== [Function] 12

Compares two objects for nonidentity.

Signature: object1 ~== object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2 are not identical. It returns false if they are
identical.

If both arguments are instances of <complex> then the result is computed in
an implementation-defined way. Otherwise, the result is computed by
~(object1 == object2).

= [Open Generic Function] 12

Compares two objects for equality.

Signature: object1 = object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Equality and Comparison 257

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2 are equal. Otherwise, it returns false.

Programmers may define methods for = specialized on classes they define. A
programmer may be required to provide an = method when defining
subclasses of some predefined classes in order to fullfill the protocol of the
class, as described below. For objects which do not have a more specific =
method, = returns the same as ==.

= is not guaranteed to return. For example, it may not return when called on
circular structures or otherwise unbounded structures.

The generic function = is inert over the domain (<complex>, <complex>).

object1 = object2 ⇒ boolean [G.F. Method] 12

The default method on = calls == and returns the result returned by ==.

complex1 = complex2 ⇒ boolean [G.F. Method] 12

Complex numbers are equal if they have the same mathematical value.

collection1 = collection2 ⇒ boolean [G.F. Method] 12

Two collections are equal if they have identical key-test functions, they have
the same keys (as determined by their key-test functions), the elements at
corresponding keys are =, and neither collection is a dotted list.

sequence1 = sequence2 ⇒ boolean [G.F. Method] 12

For sequences, = returns true if sequence1 and sequence2 have the same size and
elements with = keys are =, and returns false otherwise.

list1 = list2 ⇒ boolean [G.F. Method] 12

For lists, = returns true if the two lists are the same size, corresponding
elements of list1 and list2 are = and the final tails are =. It returns false
otherwise.

C H A P T E R 1 2

The Built-In Functions

258 Equality and Comparison

list = sequence ⇒ boolean [G.F. Method]
sequence = list ⇒ boolean [G.F. Method] 12

For mixed lists and sequences, = returns true if the list is not a dotted list, both
have the same size, and elements with = keys are =. It returns false otherwise.

range1 =range2 ⇒ boolean [G.F. Method] 12

When called with two ranges, = always terminates, even if one or both ranges
are unbounded in size.

~= [Function] 12

Compares two objects for inequality.

Signature: object1 ~= object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2 are not equal. It returns false if they are equal.

If both arguments are instances of <complex> then the result is computed in
an implementation-defined way. Otherwise, the result is computed by the
expression ~(object1 = object2).

Magnitude Comparisons 12

< [Open Generic Function] 12

Returns true if its first operand is less than its second operand.

Signature: object1 < object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Equality and Comparison 259

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is less than object2.

The generic function < is inert over the domain (<complex>, <complex>).

real1 < real2 ⇒ boolean [G.F. Method] 12

Built-in real numbers are compared by mathematical value.

character1 < character2 ⇒ boolean [G.F. Method] 12

Characters are compared by the ordinal value of the underlying character set.
Character case is significant.

string1 < string2 ⇒ boolean [G.F. Method] 12

When both arguments are strings, < compares strings by comparing elements
from left to right, using < and = on corresponding elements, and stopping
when the elements are not =. If one string is a strict prefix of the other, the
shorter string is considered the “smaller” one.

For variations on string comparison (such as comparisons that ignore case),
different comparison operators must be used.

> [Function] 12

Returns true if its first operand is greater than its second operand.

Signature: object1 > object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is greater than object2.

If both arguments are instances of <complex> then the result is computed in
an implementation-defined way. Otherwise, the result is computed by the
expression (object2 < object1).

C H A P T E R 1 2

The Built-In Functions

260 Equality and Comparison

<= [Function] 12

Returns true if its first operand is less than or equal to its second operand.

Signature: object1 <= object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is less than or equal to object2.

If both arguments are instances of <complex> then the result is computed in
an implementation-defined way. Otherwise, the result is computed by the
expression ~(object2 < object1).

>= [Function] 12

Returns true if its first operand is greater than or equal to its second operand.

Signature: object1 >= object2 ⇒ boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is greater than or equal to object2.

If both arguments are instances of <complex> then the result is computed in
an implementation-defined way. Otherwise, the result is computed by the
expression ~(object1 < object2).

min [Function] 12

Returns the least of its arguments.

Signature: min object1 #rest objects ⇒ object2

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 261

Arguments: object1 An instance of <object>.

objects Zero or more instances of <object>.

Values: object2 An instance of <object>.

Description: Returns the least of its arguments.

min operates by calling <, and therefore is applicable to any objects for which <
is defined.

max [Function] 12

Returns the greatest of its arguments.

Signature: max object1 #rest objects ⇒ object2

Arguments: object1 An instance of <object>.

objects Zero or more instances of <object>.

Values: object2 An instance of <object>.

Description: Returns the greatest of its arguments.

max operates by calling <, and therefore is applicable to any objects for which <
is defined.

Arithmetic Operations 12

When instances of <rational> and instances of <float> are combined by a
numerical function, the instance of <rational> is first converted to an
instance of <float> of the same format as the original instance of <float>.

C H A P T E R 1 2

The Built-In Functions

262 Arithmetic Operations

Properties 12

odd? [Function] 12

Tests for the property of being an odd number.

Signature: odd? integer ⇒ boolean

Arguments: integer An instance of <integer>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an odd number.

even? [Function] 12

Tests for the property of being an even number.

Signature: even? integer ⇒ boolean

Arguments: integer An instance of <integer>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an even number.

zero? [Open Generic Function] 12

Tests for the property of being equal to zero.

Signature: zero? object ⇒ boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is equal to zero.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 263

zero? complex ⇒ boolean [G.F. Method] 12

A method is defined for the class <complex>.

positive? [Open Generic Function] 12

Tests for the property of being positive.

Signature: positive? object ⇒ boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is positive.

positive? real ⇒ boolean [G.F. Method] 12

A method is defined for the class <real>.

negative? [Open Generic Function] 12

Tests for the property of being negative.

Signature: negative? object ⇒ boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is negative.

negative? real ⇒ boolean [G.F. Method] 12

A method is defined for the class <real>.

integral? [Open Generic Function] 12

Tests for the property of being integral.

C H A P T E R 1 2

The Built-In Functions

264 Arithmetic Operations

Signature: integral? object ⇒ boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an integer.

integral? object ⇒ false [G.F. Method] 12

A method is defined for the class <object> which returns #f.

integral? real ⇒ boolean [G.F. Method] 12

A method is defined for real numbers which is equivalent to real =
round(real).

Arithmetic Operations 12

+ [Open Generic Function] 12

Returns the sum of its arguments.

Signature: object1 + object2 ⇒ #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Adds two objects and returns the sum.

complex1 + complex2 ⇒ complex [G.F. Method] 12

A predefined method returns the sum of two complex numbers.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 265

* [Open Generic Function] 12

Returns the product of its arguments.

Signature: object1 * object2 ⇒ #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Multiplies two objects and returns the product.

complex1 * complex2 ⇒ complex [G.F. Method] 12

A predefined method returns the product of two complex numbers.

- [Open Generic Function] 12

Returns the difference of its arguments.

Signature: object1 – object2 ⇒ #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Subtracts object2 from object1 and returns the difference.

complex1 - complex2 ⇒ complex [G.F. Method] 12

A predefined method returns the difference of two complex numbers.

/ [Open Generic Function] 12

Returns the quotient of its arguments.

C H A P T E R 1 2

The Built-In Functions

266 Arithmetic Operations

Signature: object1 / object2 ⇒ #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Divides object2 into object1 and returns the quotient.

complex1 / complex2 ⇒ complex [G.F. Method] 12

A predefined method returns the quotient of two complex numbers.

Division by zero signals an error.

The result of dividing two integers with / is implementation defined. Portable
programs should use floor/, ceiling/, round/, or truncate/ to divide
two integers.

negative [Open Generic Function] 12

Returns the negation of an object.

Signature: negative object1 ⇒ #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the negation of its argument. The unary minus operator is equivalent
to a call to the negative in the current binding environment.

negative real1 ⇒ real2 [G.F. Method] 12

A predefined method returns the additive inverse of a real number.

floor [Function] 12

Truncates a real number towards negative infinity.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 267

Signature: floor real1 ⇒ integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards negative infinity. The integer part is returned as integer,
the remainder is returned as real2.

ceiling [Function] 12

Truncates a real number towards positive infinity.

Signature: ceiling real1 ⇒ integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards positive infinity. The integer part is returned as integer,
the remainder is returned as real2.

round [Function] 12

Rounds a real number towards the nearest mathematical integer.

Signature: round real1 ⇒ integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Rounds real1 towards towards the nearest mathematical integer. The integer
part is returned as integer, the remainder is returned as real2.

C H A P T E R 1 2

The Built-In Functions

268 Arithmetic Operations

truncate [Function] 12

Truncates a real number towards zero.

Signature: truncate real1 ⇒ integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards zero. The integer part is returned as integer, the
remainder is returned as real2.

floor/ [Function] 12

Returns the floor of the quotient of two numbers.

Signature: floor/ real1 real2 ⇒ integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards negative infinity. The
integer part of the result is returned as integer, the remainder is returned as real3.

ceiling/ [Function] 12

Returns the ceiling of the quotient of two numbers.

Signature: ceiling/ real1 real2 ⇒ integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 269

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards positive infinity. The
integer part of the result is returned as integer, the remainder is returned as real3.

round/ [Function] 12

Rounds off the quotient of two numbers.

Signature: round/ real1 real2 ⇒ integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and rounds the result towards the nearest mathematical
integer. The integer part of the result is returned as integer, the remainder is
returned as real3.

truncate/ [Function] 12

Returns the truncated quotient of two numbers.

Signature: truncate/ real1 real2 ⇒ integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards zero. The integer part
of the result is returned as integer, the remainder is returned as real3.

C H A P T E R 1 2

The Built-In Functions

270 Arithmetic Operations

modulo [Function] 12

Returns the second value of floor/.

Signature: modulo real1 real2 ⇒ real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: real3 An instance of <real>.

Description: Returns the second value of floor/(real1 , real2).

remainder [Function] 12

Returns the second value of truncate/.

Signature: remainder real1 real2 ⇒ real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: real3 An instance of <real>.

Description: Returns the second value of truncate/(real1 , real2).

^ [Open Generic Function] 12

Raises an object to a specified power.

Signature: object1 ^ object2 ⇒ #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns object1 raised to the power object2.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 271

complex1 ^ complex2 ⇒ number [G.F. Method] 12

A predefined method raises a complex number to the power of another
complex number and returns the result.

abs [Open Generic Function] 12

Returns the absolute value of its argument.

Signature: abs object1 ⇒ #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the absolute value of object1.

abs complex1 ⇒ complex [G.F. Method] 12

A predefined method returns the absolute value of a complex number.

logior [Function] 12

Returns the bitwise inclusive or of its integer arguments.

Signature: logior #rest integers ⇒ integer

Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>..

Description: Returns the bitwise inclusive or of the integers.

logxor [Function] 12

Returns the bitwise exclusive or of its integer arguments.

Signature: logxor #rest integers ⇒ integer

C H A P T E R 1 2

The Built-In Functions

272 Arithmetic Operations

Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>.

Description: Returns the bitwise exclusive or of the integers.

logand [Function] 12

Returns the bitwise and of its integer arguments.

Signature: logand #rest integers ⇒ integer

Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>.

Description: Returns the bitwise and of the integers.

lognot [Function] 12

Returns the bitwise not of its integer argument.

Signature: lognot integer1 ⇒ integer2

Arguments: integer1 An instance of <integer>.

Values: integer2 An instance of <integer>.

Description: Returns the bitwise not of the integer1.

logbit? [Function] 12

Tests the value of a particular bit in its integer argument.

Signature: logbit? index integer ⇒ boolean

Arguments: index An instance of <integer>.

integer An instance of <integer>.

C H A P T E R 1 2

The Built-In Functions

Arithmetic Operations 273

Values: boolean An instance of <boolean>.

Description: Returns true if the indexth bit in integer is a one-bit; otherwise it returns false.

Negative integers are treated as if they were in two’s-complement notation.

ash [Function] 12

Performs an arithmetic shift on its first argument.

Signature: ash integer1 count ⇒ integer2

Arguments: integer1 An instance of <integer>.

count An instance of <integer>.

Values: integer2 An instance of <integer>.

Description: Performs an arithmetic shift on the binary representation of integer1.

ash shifts integer1 arithmetically left by count bit positions if count is positive,
or right count bit positions if count is negative. The shifted value of the same
sign as integer1 is returned.

When ash moves bits to the left, it adds zero-bits at the right. When it moves
them to the right, it discards bits.

ash is defined to behave as if integer1 were represented in two's complement
form, regardless of how integers are represented by the implementation.

ash(8, 1)

 ⇒ 16

ash(32, -1)

 ⇒ 16

lcm [Function] 12

Returns the least common multiple of two integers.

Signature: lcm integer1 integer2 ⇒ integer

Arguments: integer1 An instance of <integer>.

C H A P T E R 1 2

The Built-In Functions

274 Coercing and Copying Objects

integer2 An instance of <integer>.

Values: integer An instance of <integer>.

Description: Returns the least common multiple of integer1 and integer2.

gcd [Function] 12

Returns the greatest common divisor of two integers.

Signature: gcd integer1 integer2 ⇒ integer

Arguments: integer1 An instance of <integer>.

integer2 An instance of <integer>.

Values: integer An instance of <integer>.

Description: Returns the greatest common divisor of integer1 and integer2.

Coercing and Copying Objects 12

identity [Function] 12

Returns its argument.

Signature: identity object ⇒ object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as
an argument.

Description: Returns object unaltered.

C H A P T E R 1 2

The Built-In Functions

Coercing and Copying Objects 275

values [Function] 12

Returns its arguments as multiple values.

Signature: values #rest the-values ⇒ #rest the-values

Arguments: the-values Zero or more instances of <object>.

Values: the-values Zero or more instances of <object>; the objects that were
passed as arguments.

Description: Returns the-values as multiple values.

values(1, 2, 3);

 ⇒ 1 // first value returned

 2 // second value returned

 3 // third value returned

General Coercion Function 12

as [Open Generic Function] 12

Coerces an object to a type.

Signature: as type object ⇒ instance

Arguments: type An instance of <type>.

object An instance of <object>.

Values: instance An instance of <object>. It must be an instance of type.

Description: Coerces object to type. That is, it returns an instance of type that has the same
contents as object. If object is already an instance of type, it is returned
unchanged. In general, the value returned may or may not be freshly allocated.

Predefined methods allow coercion between integers and characters, between
strings and symbols, and between collection types. No methods are predefined
for other classes. Programs may define additional methods.

C H A P T E R 1 2

The Built-In Functions

276 Coercing and Copying Objects

as collection-type collection ⇒ instance-of-collection-type [G.F. Method] 12

When converting between collection types, the return value will have the same
number of elements as collection. If the collection is an instance of <sequence>
and the collection-type is a subtype of <sequence>, the elements will be in the
same order. The individual elements may also undergo some conversion.
The specific collection types for which as is defined is implementation defined.

as (singleton <integer>) character ⇒ integer [G.F. Method] 12

This method on as returns a numeric equivalent for character. The integer
returned is implementation dependent.

as (singleton <character>) integer ⇒ character [G.F. Method] 12

This method on as returns the character equivalent to integer. The meaning of
integer is implementation dependent.

as (singleton <symbol>) string ⇒ symbol [G.F. Method] 12

This method on as returns the symbol that has the name string. If the symbol
does not yet exist, it is created. This method on as will always return the same
symbol for strings of the same characters, without regard to alphabetic case.

as (<symbol>, "foo")

 ⇒ #"foo"

#"FOO" == as (<symbol>, "foo")

 ⇒ #t

#"Foo"

 ⇒ #"foo"

as (singleton <string>) symbol ⇒ string [G.F. Method] 12

This method on as returns the name of the symbol, which will be a string.

as (<string>, #"Foo")

 ⇒ "Foo"

C H A P T E R 1 2

The Built-In Functions

Coercing and Copying Objects 277

Coercing Case 12

as-uppercase [Open Generic Function] 12

Coerces an object to uppercase.

Signature: as-uppercase object1 ⇒ object2

Arguments: object1 An instance of <object>.

Values: object2 An instance of <object>.

Description: Coerces an object to uppercase and returns the resulting new object.

object1 is not modified by this operation.

as-uppercase character ⇒ uppercase-character [G.F. Method] 12

This method returns the upper-case equivalent for character. If character already
is uppercase or does not exist in two cases, it is returned unchanged.

as-uppercase string ⇒ new-string [G.F. Method] 12

This method is equivalent to map (as-uppercase, string).

as-uppercase! [Open Generic Function] 12

Coerces an object to uppercase in place.

Signature: as-uppercase! object ⇒ object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as
an argument.

Description: Coerces an object to uppercase in place and returns the modified object.

object may be modified by this operation, and the result will be == to the object.

C H A P T E R 1 2

The Built-In Functions

278 Coercing and Copying Objects

as-uppercase! string ⇒ string [G.F. Method] 12

This method is equivalent to map-into(string , as-uppercase , string).

as-lowercase [Open Generic Function] 12

Coerces an object to lowercase.

Signature: as-lowercase object1 ⇒ object2

Arguments: object1 An instance of <object>.

Values: object2 An instance of <object>.

Description: Coerces an object to lowercase and returns the resulting new object.

object1 will not be modified by this operation.

as-lowercase character ⇒ lowercase-character [G.F. Method] 12

The <character> method on as-lowercase returns the lower-case
equivalent for character. If character already is lowercase or does not exist in
two cases, it is returned unchanged.

as-lowercase string ⇒ new-string [G.F. Method] 12

This method is equivalent to map(as-lowercase, string).

as-lowercase! [Open Generic Function] 12

Coerces an object to lowercase in place.

Signature: as-lowercase! object ⇒ object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as
an argument.

Description: Coerces an object to lowercase in place and returns the modified object.

C H A P T E R 1 2

The Built-In Functions

Coercing and Copying Objects 279

object may be modified by this operation, and the result will be == to the object.

as-lowercase! string ⇒ string [G.F. Method] 12

This method is equivalent to map-into(string , as-lowercase, string).

Copying Objects 12

shallow-copy [Open Generic Function] 12

Returns a copy of its argument.

Signature: shallow-copy object1 ⇒ #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns a new object that has the same contents as object1. The contents are
not copied but are the same objects contained in object1.

There is a predefined method for instances of <collection>. For other
classes, the programmer must provide a method.

shallow-copy collection ⇒ new-collection [G.F. Method] 12

The method for <collection> creates a new object by calling make on the
type-for-copy of collection and filling it with the same elements as collection.

type-for-copy [Open Generic Function] 12

Returns an appropriate type for creating mutable copies of its argument.

Signature: type-for-copy object ⇒ type

Arguments: object An instance of <object>.

Values: type An instance of <type>.

C H A P T E R 1 2

The Built-In Functions

280 Coercing and Copying Objects

Description: Returns an appropriate type for creating mutable copies of object.

The type-for-copy value of a collection must be an instantiable subtype of
<mutable-collection>. For collections that are themselves mutable, the
collection’s actual class is generally the most appropriate (assuming it is
instantiable). The type-for-copy value for a sequence should be a subtype
of <sequence>, and the type-for-copy value of an explicit-key-collection
should be a subtype of <explicit-key-collection>.

type-for-copy object ⇒ type [G.F. Method] 12

The method on <object> returns the result of calling object-class on the
object.

type-for-copy mutable-collection ⇒ type [G.F. Method] 12

The method on <mutable-collection> returns the result of calling
object-class on the mutable-collection.

type-for-copy limited-collection ⇒ type [G.F. Method] 12

For a type L1 created by limited(C, of: T, size: S) where C is not
<range>, type-for-copy of an object made by instantiating L1 returns a
type L2 that satisfies each of the following:

■ L2 is either a class or a limited collection type.

■ L2 is a subtype of C.

■ L2’s element type is equivalent to T.

■ If L2 is a limited collection type, its size attribute is #f.

type-for-copy range ⇒ <list> [G.F. Method] 12

The method on <range> returns <list>.

type-for-copy limited-range ⇒ <list> [G.F. Method] 12

The method on instances of limited(singleton(<range>)…) returns
<list>, the same as for any instance of <range>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 281

Collection Operations 12

Note to implementors:

Functions such as map, map-as that return a new collection cannot rely on the
type they instantiate having a valid default for fill:. Therefore when the
size of the result is non-zero these functions should compute the first element
of the result before making the collection, and specify that element as the
fill: value. Otherwise a spurious type error could occur when making the
collection.

Collection Properties 12

empty? [Open Generic Function] 12

Returns true if its argument is empty.

Signature: empty? object ⇒ boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object is empty. Otherwise returns #f.

empty? collection ⇒ boolean [G.F. Method] 12

A set of methods defined for the class <collection> return true if the
collection has zero elements.

size [Open Generic Function] 12

Returns the size of its argument.

Signature: size object ⇒ #rest objects

C H A P T E R 1 2

The Built-In Functions

282 Collection Operations

Arguments: object An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the size of object.

size collection ⇒ integer-or-false [G.F. Method] 12

When called on a collection, size returns the numbers of keys in the
collection. This default method simply counts while iterating through the
collection. size may return #f for collections of unbounded size.

size array ⇒ size [G.F. Method] 12

The method for <array> is equivalent to

reduce(*, 1, dimensions (array))

size list ⇒ integer-or-false [G.F. Method] 12

For circular lists, size is guaranteed to terminate and return #f. For
non-circular lists, size returns an integer size value.

size range ⇒ size [G.F. Method] 12

For unbounded ranges, size always terminates and returns #f. For finite
ranges, size returns an integer.

size table ⇒ size [G.F. Method] 12

The class <table> provides an implementation of size for use by its
subclasses. The method returns an instance of <integer>.

size-setter [Open Generic Function] 12

Sets the size of an object.

Signature: size-setter new-size object ⇒ new-size

Arguments: new-size An instance of <object>.

object An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 283

Values: new-size An instance of <object>.

Description: Sets the size of object to new-size.

object is modified by this operation.

size-setter integer stretchy-sequence ⇒ integer [G.F. Method] 12

Methods are provided for stretchy sequences, that is, for collections which are
instances both of <stretchy-collection> and of <sequence>.

size-setter sets the size of stretchy-sequence to be integer. stretchy-sequence
is modified by this operation. If integer is less than or equal to the original size
of stretchy-sequence, then the first integer elements of stretchy-sequence are
retained at the same positions. If integer is greater than the original size of
stretchy-sequence, then the previous elements of the stretchy-sequence are retained
at the same positions, and enough new elements are added to reach the new
size. The value of each new element is the same as would have been used if
stretchy-sequence had been created with make, specifying size: integer but
not fill:.

It is not specified how size-setter adds new elements to a stretchy-sequence.
In particular, it is not required to call add! or any other predefined function.

rank [Open Generic Function] 12

Returns the number of dimensions of an array.

Signature: rank array ⇒ rank

Arguments: array An instance of <array>.

Values: rank An instance of <integer>.

Description: Returns the number of dimensions (the rank) of array.

rank array ⇒ rank [G.F. Method] 12

The method for <array> computes rank by calling size on the dimensions
of array.

C H A P T E R 1 2

The Built-In Functions

284 Collection Operations

row-major-index [Open Generic Function] 12

Returns the row-major-index position of an array element.

Signature: row-major-index array #rest subscripts ⇒ index

Arguments: array An instance of <array>.

subscripts Instances of <integer>.

Values: index An instance of <integer>.

Description: Computes the position according to the row-major ordering of array for the
element that is specified by subscripts, and returns the position of that
element.

An error is signaled if the number of subscripts is not equal to the rank of the
array. An error is signaled if any of the subscripts are out of bounds for array.

row-major-index array #rest subscripts ⇒ index [G.F. Method] 12

The method for <array> computes the index using the result of calling
dimensions on the array.

dimensions [Open Generic Function] 12

Returns the dimensions of an array.

Signature: dimensions array ⇒ sequence

Arguments: array An instance of <array>.

Values: sequence An instance of <sequence>. The elements of this sequences
will be instances of <integer>.

Description: Returns the dimensions of array, as a sequence of integers. The consequences
are undefined if the resulting sequence is modified. This function forms the
basis for all the other array operations. Each concrete subclass of <array>
must either provide or inherit an implementation of this function.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 285

dimensions vector ⇒ sequence [G.F. Method] 12

Returns a sequence whose single element is the size of the vector.

dimension [Open Generic Function] 12

Returns the size of a specified dimension of an array.

Signature: dimension array axis ⇒ dimension

Arguments: array An instance of <array>.

axis An instance of <integer>.

Values: dimension An instance of <integer>.

Description: Returns the axis dimension of array.

axis must be a non-negative integer less than the rank of array. An error is
signaled if axis is out of bounds for array.

dimension array axis ⇒ dimension [G.F. Method] 12

The method for <array> calls element on the result of calling dimensions
on the array, using the axis number as the key.

key-test [Open Generic Function] 12

Returns the function used by its collection argument to compare keys.

Signature: key-test collection ⇒ test-function

Arguments: collection An instance of <collection>.

Values: test-function An instance of <function>. The function used by the
collection to compare keys.

Description: Returns the function used by collection to compare keys.

All collection classes must provide or inherit a method that returns a result
consistent with their iteration protocol and element methods. A given

C H A P T E R 1 2

The Built-In Functions

286 Collection Operations

method for key-test must return the same value (compared with ==) each
time it is called.

key-test sequence ⇒ test-function [G.F. Method] 12

The method of key-test for sequences returns the function ==.

key-test table ⇒ test-function [G.F. Method] 12

The method of key-test for instances of <table> returns the first value of
table-protocol(table).

key-sequence [Open Generic Function] 12

Returns a sequence containing the keys of its collection argument.

Signature: key-sequence collection ⇒ keys

Arguments: collection An instance of <collection>.

Values: keys An instance of <sequence> containing the keys of collection.

Description: Returns a sequence containing the keys of collection.

Although elements may be duplicated in a collection, keys, by their nature,
must be unique; two different elements in a collection may not share a common
key, even though distinct keys may yield identical elements.

The order in which the keys from collection appear in the key sequence is
unspecified if collection is unstable under iteration. In particular, different calls
to key-sequence with the same argument may yield differently ordered key
sequences. If collection is stable under iteration, however, the resulting
sequence of keys will be in the natural order for collection.

Selecting Elements 12

element [Open Generic Function] 12

Returns the collection element associated with a particular key.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 287

Signature: element collection key #key default ⇒ element

Arguments: collection An instance of <collection>.

key An instance of <object>.

default An instance of <object>.

Values: element An instance of <object>.

Description: Returns the element associated with key in collection. If no element is associated
with key, then the behavior of element depends on whether it was called with
a default argument: if a default argument was passed, its value is returned;
otherwise, an error is signaled.

All collections are required to implement element.

element simple-vector index #key default ⇒ element [G.F. Method] 12

There is a constant time implementation of element for all general instances
of <simple-vector>.

element unicode-string index #key default ⇒ character [G.F. Method] 12

The class <unicode-string> provides a constant time implementation for
the element function.

element byte-string index #key default ⇒ character [G.F. Method] 12

The class <byte-string> provides a constant time implementation for the
element function.

element table key #key default ⇒ element [G.F. Method] 12

The class <table> provides a default implementation for the element
function.

element-setter [Open Generic Function] 12

Sets the collection element associated with a particular key.

Signature: element-setter new-value mutable-collection key ⇒ new-value

C H A P T E R 1 2

The Built-In Functions

288 Collection Operations

Arguments: new-value An instance of <object>.

mutable-collection
An instance of <mutable-collection>.

key An instance of <object>.

Values: new-value Zero or more instances of <object>.

Description: Alters mutable-collection so that the value associated with key will subsequently
be new-value. If mutable-collection is stretchy, element-setter may also
change its size (for example, by adding new keys with values).

An error is signaled if a program calls element-setter with a key that is not
already a key to collection, unless the collection is stretchy.

Stretchy collections allow element-setter to be called with a key that is not
present in the collection, expanding the collection as necessary to add a new
element in that case. Each concrete subclass of <stretchy-collection>
must provide or inherit a method for element-setter that behaves as
follows when there is not already an element present for the indicated key:

■ If the class is a subclass of <explicit-key-collection>, adds a new
element to the collection with the indicated key.

■ If the class is a subclass of <sequence>, first calls size-setter on the key
+ 1 and the collection to expand the sequence. The key must be a
non-negative integer.

element-setter new-element simple-vector index [G.F. Method]
⇒ new-element 12

There is a constant time implementation of element-setter for all general
instances of <simple-vector>.

element-setter new-value table key [G.F. Method] 12

The class <table> provides an implementation of element-setter for use
by its subclasses. If no element with the given key exists, element-setter
will add the key and new-value to the table.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 289

element-setter character unicode-string index ⇒ character [G.F. Method] 12

The class <unicode-string> provides a constant time implementation for
the element-setter function.

element-setter character byte-string index ⇒ character [G.F. Method] 12

The class <byte-string> provides a constant time implementation for the
element-setter function.

aref [Open Generic Function] 12

Returns the array element indicated by a set of indices.

Signature: aref array #rest indices ⇒ element

Arguments: array An instance of <array>.

indices Instances of <integer>.

Values: element An instance of <object>.

Description: Returns the element of array indicated by indices.

An error is signaled if the number of indices is not equal to the rank of the array.
An error is signaled if any of the indices are out of bounds for the array.

aref array #rest indices ⇒ element [G.F. Method] 12

The method for <array> calls element on the array, using as the key the
result of applying row-major-index to the array and indices.

aref-setter [Open Generic Function] 12

Sets the array element indicated by a set of indices.

Signature: aref-setter new-value array #rest indices ⇒ new-value

Arguments: new-value An instance of <object>.

array An instance of <array>.

indices Instances of <integer>.

C H A P T E R 1 2

The Built-In Functions

290 Collection Operations

Values: new-value An instance of <object>.

Description: Sets the element of array indicated by indices to the new-value and returns the
new-value.

array is modified by this operation.

An error is signaled if the number of indices is not equal to the rank of the array.
An error is signaled if any of the indices are out of bounds for array. An error is
signaled if the array is limited to hold objects of a particular type and the new
value is not an instance of that type.

aref-setter new-value array #rest indices ⇒ new-value [G.F. Method] 12

The method for <array> calls element-setter on the array and new value,
using as the key the result of applying row-major-index to the array and
indices.

first [Function] 12

Returns the first element of a sequence.

Signature: first sequence #key default ⇒ value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the first element of the sequence by calling element with the supplied
arguments and the corresponding index.

Note that because element is zero-based, first(seq) is equivalent to
element(seq, 0) and seq[0].

second [Function] 12

Returns the second element of a sequence.

Signature: second sequence #key default ⇒ value

C H A P T E R 1 2

The Built-In Functions

Collection Operations 291

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the second element of the sequence by calling element with the
supplied arguments and the corresponding index.

third [Function] 12

Returns the third element of a sequence.

Signature: third sequence #key default ⇒ value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the third element of the sequence by calling element with the supplied
arguments and the corresponding index.

first-setter [Function] 12

Sets the first element of a mutable sequence.

Signature: first-setter new-value mutable-sequence ⇒ new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the first element of the mutable-sequence and returns the new-value, by
calling element-setter with the supplied arguments and the
corresponding index.

C H A P T E R 1 2

The Built-In Functions

292 Collection Operations

Note that because element-setter is zero-based, first-setter(val,
seq) is equivalent to element-setter(val, seq, 0) and seq[0] :=
val.

second-setter [Function] 12

Sets the second element of a mutable sequence.

Signature: second-setter new-value mutable-sequence ⇒ new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the second element of the mutable-sequence and returns the new-value, by
calling element-setter with the supplied arguments and the
corresponding index.

third-setter [Function] 12

Sets the third element of a mutable sequence.

Signature: third-setter new-value mutable-sequence ⇒ new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the third element of the mutable-sequence and returns the new-value, by
calling element-setter with the supplied arguments and the
corresponding index.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 293

last [Open Generic Function] 12

Returns the last element of a sequence.

Signature: last sequence #key default ⇒ value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value Zero or more instances of <object>.

Description: Returns the last element of sequence.

If the sequence is empty, then the behavior of last depends on whether it was
called with a default argument. If the default argument was supplied, its value
is returned; otherwise, an error is signaled.

last (#("emperor", "of", "china"))

 ⇒ "china"

last-setter [Open Generic Function] 12

Sets the last element of a mutable sequence.

Signature: last-setter new-value mutable-sequence ⇒ new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Replaces the last element of mutable-sequence with new-value.

mutable-sequence is modified by this operation.

new-value must obey any type restrictions for elements of mutable-sequence . An
error is signaled if mutable-sequence is empty or unbounded.

C H A P T E R 1 2

The Built-In Functions

294 Collection Operations

define variable my-list = list (1, 2, 3)

my-list

 ⇒ #(1, 2, 3)

last (my-list) := 4

 ⇒ 4

my-list

 ⇒ #(1, 2, 4)

define variable my-empty-vector = vector()

my-empty-vector

 ⇒ #[]

last (my-empty-vector) := 4

{error}

head [Function] 12

Returns the head of a list.

Signature: head list ⇒ object

Arguments: list An instance of <list>.

Values: object An instance of <object>.

Description: Returns the head of list.

If list is a pair, head returns the value of the head slot. If list is the empty list,
head returns the empty list.

head (#(4, 5, 6))

 ⇒ 4

head (#())

 ⇒ #()

tail [Function] 12

Returns the tail of a list.

Signature: tail list ⇒ object

C H A P T E R 1 2

The Built-In Functions

Collection Operations 295

Arguments: list An instance of <list>.

Values: object An instance of <object>.

Description: Returns the tail of list.

If list is a pair, tail returns the value of the tail slot. If list is the empty list,
tail returns the empty list.

tail (#(4, 5, 6))

 ⇒ #(5, 6)

tail (#())

 ⇒ #()

head-setter [Function] 12

Sets the head of a pair.

Signature: head-setter object pair ⇒ object

Arguments: object An instance of <object>.

pair An instance of <pair>.

Values: object An instance of <object>.

Description: Sets the head of pair to contain object and returns object.

pair is modified by this operation.

Example

define variable x = list (4, 5, 6)

head (x) := 9

 ⇒ 9

x

 ⇒ #(9, 5, 6)

tail-setter [Function] 12

Sets the tail of a pair.

C H A P T E R 1 2

The Built-In Functions

296 Collection Operations

Signature: tail-setter object pair ⇒ object

Arguments: object An instance of <object>.

pair An instance of <pair>.

Values: object An instance of <object>.

Description: Sets the tail of pair to contain object and returns object.

pair is modified by this operation.

define variable x = list (4, 5, 6)

tail (x) := #(9, 8, 7)

 ⇒ #(9, 8, 7)

x

 ⇒ #(4, 9, 8, 7)

tail (x) := "dot"

 ⇒ "dot"

x

 ⇒ #(4, 9, 8 . "dot")

Adding and Removing Elements 12

add [Open Generic Function] 12

Adds an element to a sequence.

Signature: add source-sequence new-element ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element
An instance of <object>.

Values: result-sequence
An instance of <sequence>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 297

Description: Returns a sequence that contains new-element and all the elements of
source-sequence. The result-sequence may or may not be freshly allocated. It may
share structure with a preexisting sequence.

source-sequence is not modified by this operation.

The result-sequence’s size is one greater than the size of source-sequence. The
generic function add doesn’t specify where the new element will be added,
although individual methods may do so.

define variable *numbers* = #(3, 4, 5)

add (*numbers*, 1)

 ⇒ #(1, 3, 4, 5)

numbers

 ⇒ #(3, 4, 5)

add! [Open Generic Function] 12

Adds an element to a sequence.

Signature: add! source-sequence new-element ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains new-element and all the elements of
source-sequence. The result-sequence may or may not be freshly allocated. It may
share structure with a preexisting sequence. source-sequence and result-sequence
may or may not be ==.

source-sequence may be modified by this operation.

result-sequence’s size is one greater than the size of source-sequence. The generic
function add! doesn’t specify where the new element will be added, although
individual methods may do so.

C H A P T E R 1 2

The Built-In Functions

298 Collection Operations

define variable *numbers* = list (3, 4, 5)

add! (*numbers*, 1)

 ⇒ #(1, 3, 4, 5)

numbers

 ⇒ {undefined}

add! deque new-value ⇒ deque [G.F. Method] 12

The result of add! on a deque is == to the deque argument, which is modified
by this operation.

add! stretchy-vector new-element ⇒ stretchy-vector [G.F. Method] 12

The result of add! on a stretchy vector is == to the stretchy-vector argument,
and the argument is modified by this operation. add! adds new-element at the
end of the stretchy-vector.

add! list element ⇒ pair [G.F. Method] 12

The result of add! on a list is equivalent to (pair element list). The result
will share structure with the list argument, but it will not be == to the
argument, and the argument will not be modified.

add-new [Open Generic Function] 12

Adds a new element to a sequence.

Signature: add-new source-sequence new-element #key test ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

test An instance of <function>. The default is ==.

Values: result-sequence
An instance of <sequence>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 299

Description: Adds new-element to source-sequence if it is not already an element of
source-sequence, as determined by the test function. If new-element is already a
member of source-sequence, then source-sequence is returned unmodified.

If an element is added, add-new operates just as add would.

The test function may be non-commutative: it is always called with an element
from source-sequence as its first argument and new-element as its second
argument.

add-new (#(3, 4, 5), 1)

 ⇒ #(1, 3, 4, 5)

add-new (#(3, 4, 5), 4)

 ⇒ #(3, 4, 5)

add-new! [Open Generic Function] 12

Adds a new element to a sequence.

Signature: add-new! source-sequence new-element #key test ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

test An instance of <function>. The default is ==.

Values: result-sequence An instance of <sequence>.

Description: Adds new-element to source-sequence if it is not already an element of
source-sequence, as determined by the test function. If new-element is already a
member of source-sequence, then source-sequence is returned unmodified.

If an element is added, add-new! operates just as add! would.

The test function may be non-commutative: it is always called with an element
from sequence as its first argument and new-element as its second argument.

add-new! (list (3, 4, 5), 1)

 ⇒ #(1, 3, 4, 5)

add-new! (list (3, 4, 5), 4)

 ⇒ #(3, 4, 5)

C H A P T E R 1 2

The Built-In Functions

300 Collection Operations

remove [Open Generic Function] 12

Removes an element from a sequence.

Signature: remove source-sequence value #key test count ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

value An instance of <object>.

test An instance of <function>. The default is ==.

count An instance of <integer> or #f. The default is #f.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence consisting of the elements of source-sequence not equal to
value. The result-sequence may or may not be freshly allocated. However, the
source-sequence is never modified by remove.

test is a function which determines whether an element is equal to value. The
test function may be non-commutative: it is always called with an element from
source-sequence as its first argument and value as its second argument.

If count is #f, then all copies of value are removed. Otherwise, no more than
count copies of value are removed (so additional elements equal to value might
remain in result-sequence).

define variable *old-list* = list(1, 2, 3)

define variable *new-list* = remove(*old-list* 1)

new-list

 ⇒ #(2, 3)

new-list == tail(*old-list*)

 ⇒ {undefined}

remove! [Open Generic Function] 12

Removes an element from a sequence.

Signature: remove! source-sequence value #key test count ⇒ result-sequence

C H A P T E R 1 2

The Built-In Functions

Collection Operations 301

Arguments: source-sequence
An instance of <sequence>.

value An instance of <object>.

test An instance of <function>. The default is ==.

count An instance of <integer> or #f. The default is #f.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence consisting of the elements of source-sequence not equal to
value. The result-sequence may or may not be freshly allocated, may or may not
be == to the source-sequence, and may or may not share structure with the
source-sequence. The source-sequence may be modified by remove!.

test is a function which determines whether an element is equal to value. The
test function may be non-commutative: it is always called with an element from
source-sequence as its first argument and value as its second argument.

If count is #f, then all copies of value are removed. Otherwise, no more than
count copies of value are removed (so additional elements equal to value might
remain in result-sequence).

remove! deque value #key test count ⇒ deque [G.F. Method] 12

The result of remove! on a deque is == to the deque argument. The argument
is modified by this operation.

remove! stretchy-vector element #key test count [G.F. Method]
⇒ stretchy-vector 12

The result of remove! on a stretchy vector is == to the stretchy-vector
argument. The argument is modified by this operation.

remove! list element #key test count ⇒ list [G.F. Method] 12

The result of remove! on a list may or may not be == to the list argument. The
argument may be modified by this operation.

C H A P T E R 1 2

The Built-In Functions

302 Collection Operations

push [Open Generic Function] 12

Adds an element to the front of a deque.

Signature: push deque new-value ⇒ new-value

Arguments: deque An instance of <deque>.

new-value An instance of <object>.

Values: new-value An instance of <object>. The same object that was passed in
as an argument.

Description: Augments deque by adding new-value to its front.

deque is modified by this operation.

pop [Open Generic Function] 12

Removes and returns the first element of a deque.

Signature: pop deque ⇒ first-element

Arguments: deque An instance of <deque>.

Values: first-element An instance of <object>.

Description: Removes the first element from deque and returns it.

deque is modified by this operation.

push-last [Open Generic Function] 12

Adds an element to the end of a deque.

Signature: push-last deque new-value ⇒ new-value

Arguments: deque An instance of <deque>.

new-value An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 303

Values: new-value An instance of <object>. The same object that was passed in
as an argument.

Description: Augments deque by adding new-value to its end.

deque is modified by this operation.

pop-last [Open Generic Function] 12

Removes and returns an element from the end of a deque.

Signature: pop-last deque ⇒ last-element

Arguments: deque An instance of <deque>.

Values: last-element An instance of <object>.

Description: Removes the last element from deque and returns it.

deque is modified by this operation.

Reordering Elements 12

reverse [Open Generic Function] 12

Returns a sequence with elements in the reverse order of its argument sequence.

Signature: reverse source-sequence ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the same elements as source-sequence, but in
reverse order. The result-sequence is generally of the same class as the
source-sequence.

C H A P T E R 1 2

The Built-In Functions

304 Collection Operations

The result-sequence may or may not be freshly allocated. The source-sequence is
not modified by this operation.

The consequences are undefined if the source-sequence is unbounded (circular or
infinite).

define variable *x* = list("bim", "bam", "boom")

x

 ⇒ #("bim", "bam", "boom")

reverse(*x*)

 ⇒ #("boom", "bam", "bim")

x

 ⇒ #("bim", "bam", "boom")

reverse range ⇒ new-range [G.F. Method] 12

Reversing a range produces another range. An unbounded range cannot be
reversed.

reverse! [Open Generic Function] 12

Returns a sequence with elements in the reverse order of its argument sequence.

Signature: reverse! source-sequence ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the same elements as source-sequence, but in
reverse order. The result-sequence is generally of the same class as the
source-sequence.

The source-sequence may be modified by this operation. The result-sequence may
or may not be freshly allocated. The source-sequence and the result-sequence may
or may not be ==. Programs should never rely on this operation performing a
side-effect on an existing sequence, but should instead use the value returned
by the function.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 305

The consequences are undefined if the source-sequence is unbounded (circular or
infinite).

define variable *x* = list("bim", "bam", "boom")

x

 ⇒ #("bim", "bam", "boom")

reverse!(*x*)

 ⇒ #("boom", "bam", "bim")

x

 ⇒ {undefined}

reverse! range ⇒ range [G.F. Method] 12

The result of reverse! on a range is == to the range argument. An
unbounded range cannot be reversed.

sort [Open Generic Function] 12

Returns a sequence containing the elements of its argument sequence, sorted.

Signature: sort source-sequence #key test stable ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>. The default is <.

stable An instance of <object>, treated as a boolean.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements of source-sequence sorted into
ascending order. The result-sequence may or may not be freshly allocated. The
source-sequence is not modified by this operation.

sort determines the relationship between two elements by giving elements to
the test. The first argument to the test function is one element of source-sequence;
the second argument is another element of source-sequence. test should return
true if and only if the first argument is strictly less than the second (in some
appropriate sense). If the first argument is greater than or equal to the second
(in the appropriate sense), then the test should return #f.

C H A P T E R 1 2

The Built-In Functions

306 Collection Operations

If stable is supplied and not #f, a possibly slower algorithm will be used that
will leave in their original order any two elements, x and y, such that test(x, y)
and test(y, x) are both false.

define variable *numbers* = vector(3, 1, 4, 1, 5, 9)

numbers

 ⇒ #[3, 1, 4, 1, 5, 9]

sort (*numbers*)

 ⇒ #[1, 1, 3, 4, 5, 9]

numbers

 ⇒ #[3, 1, 4, 1, 5, 9]

sort! [Open Generic Function] 12

Returns a sequence containing the elements of its argument sequence, sorted.

Signature: sort! source-sequence #key test stable ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>. The default is <.

stable An instance of <object>, treated as a boolean.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements of source-sequence sorted into
ascending order. The result-sequence may or may not be freshly allocated. The
source-sequence may be modified by this operation. The result-sequence may or
may not be == to source-sequence. After this operation, the contents of
source-sequence are undefined.

Programs should never rely on this operation performing a side-effect on an
existing sequence, but should instead use the value returned by the function.

sort! determines the relationship between two elements by giving elements
to the test. The first argument to the test function is one element of
source-sequence; the second argument is another element of source-sequence. test
should return true if and only if the first argument is strictly less than the

C H A P T E R 1 2

The Built-In Functions

Collection Operations 307

second (in some appropriate sense). If the first argument is greater than or
equal to the second (in the appropriate sense), then the test should return #f.

If stable is supplied and not #f, a possibly slower algorithm will be used that
will leave in their original order any two elements, x and y, such that test(x, y)
and test(y, x) are both false.

define variable *numbers* = vector(3, 1, 4, 1, 5, 9)

numbers

 ⇒ #[3, 1, 4, 1, 5, 9]

sort! (*numbers*)

 ⇒ #[1, 1, 3, 4, 5, 9]

numbers

 ⇒ {undefined}

Set Operations 12

intersection [Open Generic Function] 12

Returns the intersection of two sequences.

Signature: intersection sequence1 sequence2 #key test ⇒ new-sequence

Arguments: sequence1 An instance of <sequence>.

sequence2 An instance of <sequence>.

test An instance of <function>. The default is ==.

Values: new-sequence An instance of <sequence>.

Description: Returns a new sequence containing only those elements of sequence1 that also
appear in sequence2.

test is used to determine whether an element appears in sequence2. It is always
called with an element of sequence1 as its first argument and an element from
sequence2 as its second argument. The order of elements in the result sequence
is not specified.

new-sequence may or may not share structure with the sequence1 and sequence2.

C H A P T E R 1 2

The Built-In Functions

308 Collection Operations

? intersection (#("john", "paul", "george", "ringo"),

 #("richard", "george", "edward", "charles"),

 test: \=)

#("george")

intersection range1 range2 #key test ⇒ range [G.F. Method] 12

intersection applied to two ranges and a test of == (the default) will
produce another range as its result, even though the type-for-copy of a
range is not <range>. If either range1 or range2 is unbounded, this method is
guaranteed to terminate only if the test is ==.

union [Open Generic Function] 12

Returns the union of two sequences.

Signature: union sequence1 sequence2 #key test ⇒ new-sequence

Arguments: sequence1 An instance of <sequence>.

sequence2 An instance of <sequence>.

test An instance of <function>. The default is ==.

Values: new-sequence An instance of <sequence>.

Description: Returns a sequence containing every element of sequence1 and sequence2.

If the same element appears in both argument sequences, this will not cause it
to appear twice in the result sequence. However, if the same element appears
more than once in a single argument sequence, it may appear more than once
in the result sequence.

test is used for all comparisons. It is always called with an element from
sequence1 as its first argument and an element from sequence2 as its second
argument. The order of elements in the new-sequence is not specified.

new-sequence may or may not share structure with sequence1 or sequence2.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 309

union (#("butter", "flour", "sugar", "salt", "eggs"),

 #("eggs", "butter", "mushrooms", "onions", "salt"),

 test: \=)

 ⇒ #("salt", "butter", "flour", "sugar", "eggs",

 "mushrooms", "onions")

remove-duplicates [Open Generic Function] 12

Returns a sequence without duplicates.

Signature: remove-duplicates source-sequence #key test ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>. The default is ==.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains all the unique elements from source-sequence
but no duplicate elements.

test is the function used to determine whether one element is a duplicate of
another. The test argument may be non-commutative; it will always be called
with its arguments in the same order as they appear in source-sequence.

The result-sequence may or may not be freshly allocated. However, the
source-sequence will not be modified by this operation.

remove-duplicates (#("spam", "eggs", "spam",

 "sausage", "spam", "spam"),

 test: \=)

 ⇒ #("spam", "eggs", "sausage")

or

 ⇒ #("eggs", "spam", "sausage")

or

 ⇒ #("eggs", "sausage", "spam")

C H A P T E R 1 2

The Built-In Functions

310 Collection Operations

remove-duplicates! [Open Generic Function] 12

Returns a sequence without duplicates.

Signature: remove-duplicates! source-sequence #key test ⇒ result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>. The default is ==.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains all the unique elements from source-sequence
but no duplicate elements.

test is the function used to determine whether one element is a duplicate of
another. The test argument may be non-commutative; it will always be called
with its arguments in the same order as they appear in source-sequence.

The result-sequence may or may not be freshly allocated, may or may not share
structure with the source-sequence, and may or may not be == to the
source-sequence. The source-sequence may or may not be modified by the
operation.

define variable *menu* = #("spam", "eggs", "spam",

 "sausage", "spam", "spam")

remove-duplicates! (*menu*, test: \=)

 ⇒ #("spam", "eggs", "sausage")

or

 ⇒ #("eggs", "spam", "sausage")

or

 ⇒ #("eggs", "sausage", "spam")

menu

 ⇒ {undefined}

C H A P T E R 1 2

The Built-In Functions

Collection Operations 311

Subsequence Operations 12

copy-sequence [Open Generic Function] 12

Returns a freshly allocated copy of some subsequence of a sequence.

Signature: copy-sequence source #key start end ⇒ new-sequence

Arguments: source An instance of <sequence>.

start An instance of <integer>. The default is 0.

end An instance of <integer>. The default is the size of source.

Values: new-sequence
A freshly allocated instance of <sequence>.

Description: Creates a freshly allocated sequence containing the elements of source between
start and end.

define constant hamlet = #("to", "be", "or", "not", "to", "be")

hamlet == copy-sequence (hamlet)

 ⇒ #f

copy-sequence (hamlet, start: 2, end: 4)

 ⇒ #("or", "not")

copy-sequence range #key start end ⇒ new-range [G.F. Method] 12

When applied to a range, copy-sequence returns another range, even though
the type-for-copy of a range is the <list> class.

concatenate [Function] 12

Returns the concatenation of one or more sequences in a sequence of a type
determined by the type-for-copy of its first argument.

Signature: concatenate first-sequence #rest more-sequences ⇒ result-sequence

Arguments: first-sequence
An instance of <sequence>.

C H A P T E R 1 2

The Built-In Functions

312 Collection Operations

more-sequences
Instances of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing all the elements of all the sequences, in order.

The result-sequence will be an instance of the type-for-copy value for
first-sequence. It may or may not be freshly allocated. The result-sequence may be
created by calling make on the indicated type, with a size: initialization
argument whose value is the sum of the sizes of the argument sequences. (For
this reason, the type-for-copy value of first-sequence must support the
size: init-keyword.)

new-sequence may share structure with any of the argument sequences, but it is
not guaranteed to do so. The argument sequences will not be modified by this
operation.

concatenate ("low-", "calorie")

 ⇒ "low-calorie"

concatenate-as [Function] 12

Returns the concatenation of one or more sequences in a sequence of a
specified type.

Signature: concatenate-as type first-sequence #rest more-sequences ⇒ result-sequence

Arguments: type An instance of <type>, which must be a subtype of
<mutable-sequence>

first-sequence
An instance of <sequence>.

more-sequences
Instances of <sequence>.

Values: result-sequence
An instance of type, and therefore also an instance of
<sequence>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 313

Description: Returns a sequence containing all the elements of all the sequences, in order.

The result-sequence will be an instance of type. It may or may not be freshly
allocated.

type must be a subtype of <mutable-sequence> and acceptable as the first
argument to make. size: with a non-negative integer value must be an
acceptable initarg for make of type. The result-sequence may be created by
calling make on type, with a size: initialization argument whose value is the
sum of the sizes of the arguments.

Example

concatenate-as (<string>, #('n', 'o', 'n'), #('f', 'a', 't'))

 ⇒ "nonfat"

replace-subsequence! [Open Generic Function] 12

Replaces a portion of a sequence with the elements of another sequence.

Signature: replace-subsequence! source-sequence insert-sequence #key start end
⇒ result-sequence

Arguments: source-sequence An instance of <sequence>.

insert-sequence An instance of <sequence>.

start An instance of <integer>. The default is 0.

end An instance of <integer>. The default is the size of sequence.

Values: result-sequence An instance of <sequence>.

Description: replace-subsequence! returns a sequence with the same elements as
source-sequence, except that elements of the indicated subsequence are replaced
by all the elements of insert-sequence. The subsequence to be overridden begins
at index start and ends at index end.

result-sequence may or may not share structure with source-sequence or
insert-sequence, and it may or may not be == to source-sequence or insert-sequence.
source-sequence may or may not be modified by the operation. insert-sequence
will not modified by this operation.

C H A P T E R 1 2

The Built-In Functions

314 Collection Operations

Example

define variable x = list ("a", "b", "c", "d", "e")

abcde := replace-subsequence! (x, #("x", "y", "z"), end: 1))

 ⇒ #("x", "y", "z", "b", "c", "d", "e")

abcde := replace-subsequence! (x, #("x", "y", "z"), start: 4))

 ⇒ #("x", "y", "z", "b", "x", "y", "z")

abcde := replace-subsequence! (x, #("a", "b", "c"),

 start: 2, end: 4))

 ⇒ #("x", "y", "a", "b", "c", "x", "y", "z")

subsequence-position [Open Generic Function] 12

Returns the position where a pattern appears in a sequence.

Signature: subsequence-position big pattern #key test count ⇒ index

Arguments: big An instance of <sequence>.

pattern An instance of <sequence>.

test An instance of <function>. The default is ==.

count An instance of <integer>. The default is 1.

Values: index #f or an instance of <integer>.

Description: Searches big for a subsequence that is element-for-element equal to pattern, as
determined by the test argument.

test is applied to elements of successive subsequences of big and corresponding
elements of the pattern to determine whether a match has occurred. If a
subsequence is found, subsequence-position returns the index at which
the subsequence starts; otherwise, it returns #f. If there is more than one
match, count determines which subsequence is selected. A count of 1 (the
default) indicates that the first match should be returned.

subsequence-position ("Ralph Waldo Emerson", "Waldo")

 ⇒ 6

C H A P T E R 1 2

The Built-In Functions

Collection Operations 315

Mapping and Reducing 12

Simple Mapping 12

The following mapping functions (do, map, map-as, map-into, any?,
every?) iterate over a number of source collections. Each time through the
iteration, a function is applied to one element from each of the source
collections. The number of arguments to the function is equal to the number of
source collections.

The functions vary in how they handle the results of each function application.

do [Function] 12

Iterates over one or more collections for side effect.

Signature: do function collection #rest more-collections ⇒ false

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: false #f.

Description: Applies function to corresponding elements of all the collections and returns #f.
If all the collections are sequences, do guarantees that they will be processed in
their natural order.

do (method (a b) print (a + b) end,

 #(100, 100, 200, 200),

 #(1, 2, 3, 4))

101

102

203

204

 ⇒ #f

C H A P T E R 1 2

The Built-In Functions

316 Collection Operations

map [Function] 12

Iterates over one or more collections and collects the results in a freshly
allocated collection.

Signature: map function collection #rest more-collections ⇒ new-collection

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: new-collection A freshly allocated instance of <collection>.

Description: Creates a freshly allocated collection whose elements are obtained by calling
function on corresponding elements of all the collections. If all the collections are
sequences, processing is performed in the natural order.

map returns a collection whose value is an instance of the type-for-copy
value of collection. The new collection is created by calling make on that type,
with a size: initialization argument whose value is the number of
corresponding elements in the collections.

map (\+,

 #(100, 100, 200, 200),

 #(1, 2, 3, 4))

 ⇒ #(101, 102, 203, 204)

map-as [Function] 12

Iterates over one or more collections and collects the results in a freshly
allocated collection of a specified type.

Signature: map-as type function collection #rest more-collections ⇒ new-collection

Arguments: type An instance of <type>. It must be an instantiable subtype of
<mutable-collection>.

function An instance of <function>.

collection An instance of <collection>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 317

more-collections
Instances of <collection>.

Values: new-collection A freshly allocated instance of <mutable-collection>.

Description: Creates a freshly allocated collection of type type whose elements are obtained
by applying function to corresponding elements of the collection arguments.
type must be acceptable as the first argument to make. size: with a
non-negative integer value must be an acceptable initarg for make of type.
new-collection is created by calling make on type, with a size: initialization
argument whose value is the number of corresponding elements in the
collections. If all the collections are sequences (including new-collection),
processing is done in the natural order.

map-as (<vector>, \+,

 #(100, 100, 200, 200),

 #(1, 2, 3, 4))

 ⇒ #(101, 102, 203, 204)

map-into [Function] 12

Iterates over one or more collections and collects the results in an existing
mutable collection.

Signature: map-into mutable-collection function collection #rest more-collections
⇒ mutable-collection

Arguments: mutable-collection
An instance of <mutable-collection>.

function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: mutable-collection
An instance of <mutable-collection>.

C H A P T E R 1 2

The Built-In Functions

318 Collection Operations

Description: Returns the mutable-collection argument after modifying it by replacing its
elements with the results of applying function to corresponding elements of
collection and more-collections.

If mutable-collection and all the other collections are sequences, processing is
done in the natural order.

When mutable-collection is an instance of <stretchy-collection>, the
usual alignment requirement (described in “Collection Alignment” on
page 118) is relaxed. In this case, the key sequence of mutable-collection is not
considered during alignment. Rather, only the key sequences for the source
collections are aligned, with function called on the corresponding elements. The
result of each call to function is then stored into mutable-collection with the
corresponding key (possibly stretching mutable-collection in the process), using
element-setter. Other keys in mutable-collection remain undisturbed.

mutable-collection may be the same object as collection or any of the
more-collections.

An error is signalled if mutable-collection does not have the same key-test
function as the rest of the collections. This is true even if it is a
<stretchy-collection> and therefore does not get aligned.

define variable x = list (10, 9, 8, 7)

map-into (x, \+, #(1, 2, 3, 4), #(100, 100, 200, 200))

 ⇒ #(101, 102, 203, 204)

x

 ⇒ #(101, 102, 203, 204)

any? [Function] 12

Returns the first true value obtained by iterating over one or more collections.

Signature: any? function collection #rest more-collections ⇒ value

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: value An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 319

Description: Applies function to groups of corresponding elements of collection and
more-collections. If an application of function returns true, then any? returns that
true value. Otherwise function returns #f when applied to every such group,
and any? returns #f.

If all the collections are sequences, any? operates in natural order. In all cases,
any? stops on the first true value returned by function.

any? (\>, #(1, 2, 3 ,4), #(5, 4, 3, 2))

 ⇒ #t

any? (even?, #(1, 3, 5, 7))

 ⇒ #f

every? [Function] 12

Returns true if a predicate returns true when applied to all corresponding
elements of a set of collections.

Signature: every? function collection #rest more-collections ⇒ value

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: value An instance of <boolean>.

Description: Applies function to groups of corresponding elements of collection and
more-collections. If an application of function returns false, then every? returns
#f. Otherwise function returns a true value when applied to every such group,
and every? returns #t.

If all the collections are sequences, every? operates in natural order. In all
cases, every? stops on the first false value returned by function.

every? (\>, #(1, 2, 3, 4), #(5, 4, 3, 2))

 ⇒ #f

every? (odd?, #(1, 3, 5, 7))

 ⇒ #t

C H A P T E R 1 2

The Built-In Functions

320 Collection Operations

Extensible Mapping Functions 12

reduce [Open Generic Function] 12

Combines the elements of a collection and a seed value into a single value by
repeatedly applying a binary function.

Signature: reduce function initial-value collection ⇒ value

Arguments: function An instance of <function>.

initial-value An instance of <object>.

collection An instance of <collection>.

Values: value An instance of <object>.

Description: Returns the result of combining the elements of collection and initial-value
according to function.

If collection is empty, reduce returns initial-value; otherwise, function is applied
to initial-value and the first element of collection to produce a new value. If
more elements remain in the collection, then function is called again, this time
with the value from the previous application and the next element from
collection. This process continues until all elements of collection have been
processed.

function is a binary function used to combine all the elements of collection into a
single value. Processing is always done in the natural order for collection.

Example

define variable high-score = 10

reduce (max, high-score, #(3, 1, 4, 1, 5, 9))

 ⇒ 10

reduce (max, high-score, #(3, 12, 9, 8, 8, 6))

 ⇒ 12

C H A P T E R 1 2

The Built-In Functions

Collection Operations 321

reduce1 [Open Generic Function] 12

Combines the elements of a collection into a single value by repeatedly
applying a binary function, using the first element of the collection as the seed
value.

Signature: reduce1 function collection ⇒ value

Arguments: function An instance of <function>.

collection An instance of <collection>.

Values: value An instance of <object>.

Description: Returns the combination of the elements of collection according to function.

An error is signaled if collection is empty.

reduce1 is similar to reduce, except that the first element of collection is taken
as the initial value, and all the remaining elements of collection are processed as
if by reduce. (In other words, the first value isn’t used twice.)

For unstable collections, “first” element effectively means “an element chosen
at random.” Processing is done in the natural order for collection.

reduce1 (\+, #(1, 2, 3, 4, 5))

 ⇒ 15

choose [Open Generic Function] 12

Returns those elements of a sequence that satisfy a predicate.

Signature: choose predicate source-sequence ⇒ result-sequence

Arguments: predicate An instance of <function>.

source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

C H A P T E R 1 2

The Built-In Functions

322 Collection Operations

Description: Returns a sequence containing those elements of source-sequence that satisfy
predicate. The result-sequence may or may not be freshly allocated.

choose (even?, #(3, 1, 4, 1, 5, 8, 9))

 ⇒ #(4, 8)

choose-by [Open Generic Function] 12

Returns those elements of a sequence that correspond to those in another
sequence that satisfy a predicate.

Signature: choose-by predicate test-sequence value-sequence ⇒ result-sequence

Arguments: predicate An instance of <function>.

test-sequence An instance of <sequence>.

value-sequence An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements from value-sequence which
correspond to elements in test-sequence that satisfy predicate. The result-sequence
may or may not be freshly allocated.

choose-by (even?, range (from: 1),

 #("a", "b", "c", "d", "e", "f", "g", "h", "i"))

 ⇒ #("b", "d", "f", "h")

Other Mapping Functions 12

member? [Open Generic Function] 12

Returns true if a collection contains a particular value.

Signature: member? value collection #key test ⇒ boolean

Arguments: value An instance of <object>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 323

collection An instance of <collection>.

test An instance of <function>. The default is ==.

Values: boolean An instance of <boolean>.

Description: Returns true if collection contains value as determined by test. Otherwise returns
false.

The test function may be non-commutative: it is always called with value as its
first argument and an element from collection as its second argument.

define constant flavors = #(#"vanilla", #"pistachio", #"ginger")

member? (#"vanilla", flavors)

 ⇒ #t

member? (#"banana", flavors)

 ⇒ #f

member? val range #key test ⇒ boolean [G.F. Method] 12

If range is unbounded, this method is guaranteed to terminate if test is ==.

find-key [Open Generic Function] 12

Returns the key in a collection such that the corresponding collection element
satisfies a predicate.

Signature: find-key collection function #key skip failure ⇒ key

Arguments: collection An instance of <collection>.

predicate An instance of <function>.

skip An instance of <integer>. The default is 0.

failure An instance of <object>. The default is #f.

Values: key An instance of <object>.

Description: Returns a key value such that (predicate (element collection key)) is true. If no
element in collection satisfies predicate, find-key returns failure.

C H A P T E R 1 2

The Built-In Functions

324 Collection Operations

The skip argument indicates that the first skip matching elements should be
ignored. If skip or fewer elements of collection satisfy predicate, then failure is
returned. If collection is not stable under iteration, then skip is only useful for
finding out whether collection contains at least skip elements which satisfy
predicate; it is not useful for finding a particular element.

flavors

 ⇒ #(#"vanilla", #"pistachio", #"ginger")

find-key (flavors, has-nuts?)

 ⇒ 1

flavors[1]

 ⇒ #"pistachio"

remove-key! [Open Generic Function] 12

Modifies an explicit key collection so it no longer has a particular key.

Signature: remove-key! collection key ⇒ boolean

Arguments: collection An instance of <mutable-explicit-key-collection>.

key An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Modifies collection so that it no longer has a key equal to key. Equality is
determined by collection’s key-test function.

The boolean return value will be #t if the key was present and removed, or #f if
the key was not present and hence not removed.

remove-key! table key ⇒ table [G.F. Method] 12

There is a predefined method on <table>.

replace-elements! [Open Generic Function] 12

Replaces collection elements that satisfy a predicate.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 325

Signature: replace-elements! mutable-collection predicate new-value-fn #key count
⇒ mutable-collection

Arguments: mutable-collection
An instance of <mutable-collection>.

predicate An instance of <function>.

new-value-fn
An instance of <function>.

count An instance of <integer> or #f. The default is #f.

Values: mutable-collectionAn instance of <mutable-collection>.

Description: Replaces those elements of mutable-collection for which predicate returns true.
The elements are replaced with the value of calling new-value-fn on the existing
element. If count is #f, all of the matching elements are replaced. Otherwise,
no more than count elements are replaced.

mutable-collection may be modified by this operation.

define variable numbers = list (10, 13, 16, 19)

replace-elements! (numbers, odd?, double)

 ⇒ #(10, 26, 16, 38)

fill! [Open Generic Function] 12

Fills a collection with a specified value.

Signature: fill! mutable-collection value #key start end ⇒ mutable-collection

Arguments: mutable-collection
An instance of <collection>.

value An instance of <object>.

start An instance of <integer>.

end An instance of <integer>.

Values: mutable-collection
An instance of <collection>.

C H A P T E R 1 2

The Built-In Functions

326 Collection Operations

Description: Modifies mutable-collection so that (element mutable-collection key) returns
value for every key.

If mutable-collection is a sequence, then start and end keywords may be specified
to indicate that only a part of the sequence should be filled. start is considered
an inclusive bound and defaults to 0; end is an exclusive bound and defaults to
the length of the sequence.

define variable numbers = list (10, 13, 16, 19)

fill! (numbers, 3, start: 2)

 ⇒ #(10, 13, 3, 3)

The Iteration Protocol 12

forward-iteration-protocol [Open Generic Function] 12

Returns a group of functions used to iterate over the elements of a collection.

Signature: forward-iteration-protocol collection
⇒ initial-state limit next-state finished-state? current-key current-element
current-element-setter copy-state

Arguments: collection An instance of <collection>.

Values: initial-state An instance of <object>. The initial iteration state object.

limit An instance of <object> that is used by the finished-state?
function to determine whether the iteration has been completed.

next-state An instance of <function>. Its signature is

next-state collection state ⇒ new-state

This function steps the iteration by producing a new state from
the associated collection and state. The next-state function may
or may not modify the state argument; it is an error to use a
state value after it has been passed to the associated next-state
function. The copy-state function provides a mechanism for
saving a particular state in an iteration for later resumption.

finished-state? An instance of <function>. Its signature is

finished-state? collection state limit ⇒ boolean

C H A P T E R 1 2

The Built-In Functions

Collection Operations 327

This function returns #t if the iteration of the collection has
been completed, i.e., there are no other elements of the collection
to consider. It returns #f otherwise. It is an error to use a
finished state in a call to the associated next-state, current-element,
current-key or current-element-setter functions.

current-key An instance of <function>. Its signature is

current-key collection state ⇒ key

This function returns the unique key associated with state in the
collection. If the current-key function were called once with each
state value produced during an iteration over a collection, the
resulting sequence of values would contain every key from the
collection exactly once; it would be the key-sequence of the
collection.

current-element
An instance of <function>. Its signature is

current-element collection state ⇒ element

This function returns the element of collection currently
indicated by state.

current-element-setter
An instance of <function>. Its signature is

current-element-setter value collection state ⇒ value

This function sets the element of collection indicated by state to
value and returns value. If collection is not an instance of
<mutable-collection>, or if the value is not of a type
acceptable to the collection, an error is signaled.

copy-state An instance of <function>. Its signature is

copy-state collection state ⇒ new-state

This function returns a state which represents the same point in
the iteration over collection as is represented by state.

Description: Returns eight values used to implement iteration over the collection argument.

Only the collection argument this function was called with may be used as the
collection argument to functions returned by this function. Only the initial-state
object and state objects returned by the next-state and copy-state functions may
be used as the state argument to functions returned by this function. Only the
limit object may be used as the limit argument to the finished-state? function.

C H A P T E R 1 2

The Built-In Functions

328 Collection Operations

An example of the use of the iteration protocol is the following definition of a
single-argument version of the do function:

define method do1 (f :: <function>, c :: <collection>)

 let (init, limit, next, end?, key, elt) =

 forward-iteration-protocol(c);

 for (state = init then next(c, state),

 until end?(c, state, limit))

 f(elt(c, state));

 end for;

end method do1;

forward-iteration-protocol table
 ⇒ initial-state limit next-state finished-state? current-key current-element
current-element-setter copy-state [G.F. Method] 12

The method for <table> implements the iteration protocol in terms of the
function table-protocol.

backward-iteration-protocol [Open Generic Function] 12

Returns a group of functions used to iterate over the elements of a collection in
reverse order.

Signature: backward-iteration-protocol collection
⇒ initial-state limit next-state finished-state? current-key current-element
current-element-setter copy-state

Arguments: collection An instance of <collection>.

Values: initial-state An instance of <object>.

limit An instance of <object>.

next-state An instance of <function>.

finished-state? An instance of <function>.

current-key An instance of <function>.

current-element
An instance of <function>.

current-element-setter
An instance of <function>.

C H A P T E R 1 2

The Built-In Functions

Collection Operations 329

copy-state An instance of <function>.

Description: Returns eight values used to implement reverse iteration over the collection
argument.

Some collection classes that are stable under iteration support the ability to
iterate in the reverse of the natural order, by providing a method on the generic
function backward-iteration-protocol. The eight values returned by
this function are analogous to the corresponding values returned by
forward-iteration-protocol.

The Table Protocol 12

The class <table> provides an implementation of the iteration protocol, using
the function table-protocol. Every concrete subclass of <table> must
provide or inherit a method for table-protocol. A complete description of
the table protocol is given in “Tables” on page 120.

table-protocol [Open Generic Function] 12

Returns functions used to implement the iteration protocol for a tables.

Signature: table-protocol table ⇒ test-function hash-function

Arguments: table An instance of <table>.

Values: test-function An instance of <function>. Its signature is

test-function key1 key2 ⇒ boolean

test-function is used to compare keys. It returns true if the keys
are members of the same equivalence class according to the
table’s equivalence predicate.

hash-function
An instance of <function>. Its signature is

hash-function key ⇒ id state

hash-function computes the hash code of the key, using the hash
function associated with the table’s equivalence predicate. The
hash code is returned as two values, id (an integer) and state (a
hash state).

C H A P T E R 1 2

The Built-In Functions

330 Collection Operations

Description: Returns the test-function and hash-function for the <table>. These functions
are in turn used to implement the other collection operations on <table>.

table-protocol object-table ⇒ test-function hash-function [G.F. Method] 12

The method for <object-table> returns == as the test-function and
object-hash as the hash-function.

The method for <object-table> could be written as

define method table-protocol (table :: <object-table>)

 => test-function :: <function>,

 hash-function :: <function>;

 values(\==, object-hash);

end method table-protocol;

merge-hash-codes [Function] 12

Returns a hash-code created from the merging of two argument hash codes.

Signature: merge-hash-codes id1 state1 id2 state2 #key ordered
 ⇒ merged-id merged-state

Arguments: id1 An instance of <integer>.

state1 An instance of <object>.

id2 An instance of <integer>.

state2 An instance of <object>.

ordered An instance of <boolean>.

Values: merged-id An instance of <integer>.

merged-state An instance of <object>.

Description: Computes a new hash code by merging the argument hash codes in some
implementation dependent way.

 id1, id2, and merged-id are all integers. state1, state2, and merged-state are all
hash states. ordered is a boolean and determines whether the algorithm used to
perform the merge is permitted to be order dependent. If false, which is the
default, then the merged result must be independent of the order in which the

C H A P T E R 1 2

The Built-In Functions

Reflective Operations on Types 331

argument pairs are provided. If true, then the order of the argument pairs
matters because the algorithm used need not be either commutative or
associative. Providing a true value for ordered is recommended when doing so
will not cause the hash function to violate the second constraint on hash
functions, because it may result in a better distribution of hash ids.

state1 and state2 should be the value of $permanant-hash-state or
hash-states returned from previous calls to merge-hash-codes or
object-hash.

object-hash [Function] 12

The hash function for the equivalence predicate ==.

Signature: object-hash object ⇒ hash-id hash-state

Arguments: object An instance of <object>.

Values: hash-id An instance of <integer>.

hash-state An instance of <object>.

Description: Returns a hash-code for object which corresponds to the equivalence predicate
==. It is made available as a tool for writing hash functions in which the object
identity of some component of a key is to be used in computing the hash code.
It returns a hash id (an integer) and associated hash state for the object,
computed in some implementation dependent manner. The values returned by
object-hash when called repeatedly on the same object might not be the
same for each call. If the hash-id value changes then the hash-state value will
also change.

Reflective Operations on Types 12

instance? [Function] 12

Tests whether an object is an instance of a type.

Signature: instance? object type ⇒ boolean

C H A P T E R 1 2

The Built-In Functions

332 Reflective Operations on Types

Arguments: object An instance of <object>.

type An instance of <type>.

Values: boolean An instance of <boolean>.

Description: Returns true if object is a general instance of type.

subtype? [Function] 12

Tests whether a type is a subtype of another type.

Signature: subtype? type1 type2 ⇒ boolean

Arguments: type1 An instance of <type>.

type2 An instance of <type>.

Values: boolean An instance of <boolean>.

Description: Returns true if type1 is a subtype of type2. Subtype rules are given in “The Type
Protocol” on page 47

object-class [Function] 12

Returns the class of an object.

Signature: object-class object ⇒ class

Arguments: object An instance of <object>.

Values: class An instance of <class>.

Description: Returns the class of which object is a direct instance.

all-superclasses [Function] 12

Returns all the superclasses of a class.

Signature: all-superclasses class ⇒ sequence

C H A P T E R 1 2

The Built-In Functions

Reflective Operations on Types 333

Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>. Each element in the sequence is an
instance of <class>.

Description: Returns all the superclasses of class in a sequence. The order of the classes in
the sequence will correspond to the class precedence list of class.

The result sequence should never be destructively modified. Doing so may
cause unpredictable behavior. If class is sealed, an implementation may choose
to signal an error of type <sealed-object-error> rather than returning the
sequence of all superclasses.

direct-superclasses [Function] 12

Returns the direct superclasses of a class.

Signature: direct-superclasses class ⇒ sequence

Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>. Each element in the sequence is an
instance of <class>.

Description: Returns the direct superclasses of class in a sequence. These are the classes that
were passed as arguments to make or define class when the class was
created. The order of the classes in the sequence is the same as the order in
which they were passed to define class or make when class was created.

The result sequence should never be destructively modified. Doing so may
cause unpredictable behavior. If class is sealed, an implementation may choose
to signal an error of type <sealed-object-error> rather than returning the
direct superclasses.

direct-subclasses [Function] 12

Returns the direct subclasses of a class.

Signature: direct-subclasses class ⇒ sequence

C H A P T E R 1 2

The Built-In Functions

334 Functional Operations

Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>. Each element in the sequence is an
instance of <class>.

Description: Returns the direct subclasses of class in a sequence. These are the classes that
have class as a direct superclass. The order of the classes in the sequence is not
significant.

The result sequence should never be destructively modified. Doing so may
cause unpredictable behavior. If class is sealed, an implementation may choose
to signal an error of type <sealed-object-error> rather than returning the
direct subclasses.

Functional Operations 12

The following operations are used to create new functions from other functions
or objects. Often the Dylan compiler will have special knowledge of these
operations, to allow for efficient in-line compilation.

compose [Function] 12

Returns the composition of one or more functions.

Signature: compose function1 #rest more-functions ⇒ function

Arguments: function1 An instance of <function>.

more-functions Instances of <function>.

Values: function An instance of <function>.

Description: When called with just a single argument, compose returns that argument.

When called with two arguments, compose returns a function that applies the
second function to its arguments and then applies the first function to the
(single) result value.

C H A P T E R 1 2

The Built-In Functions

Functional Operations 335

With three or more arguments, compose composes pairs of argument
functions, until a single composite function is obtained. (It doesn’t matter if the
pairings are done from the left or from the right, as long as the order of
application is preserved.)

define constant number-of-methods =

 compose(size, generic-function-methods)

define constant root-position = compose(position, root-view)

complement [Function] 12

Returns a function that expresses the complement of a predicate.

Signature: complement predicate ⇒ function

Arguments: predicate An instance of <function>.

Values: function An instance of <function>.

Description: Returns a function that applies predicate to its arguments. If the predicate
returns #f, the complement returns #t; otherwise, the complement returns #f.
For example, odd? could be defined as complement(even?).

choose(complement(zero?), #(1, 3, 0, 4, 0, 0, 3))

 ⇒ #(1, 3, 4, 3)

disjoin [Function] 12

Returns a function that expresses the disjunction of one or more predicates.

Signature: disjoin predicate1 #rest more-predicates ⇒ function

Arguments: predicate1 An instance of <function>.

more-predicates
Functions.

Values: function An instance of <function>.

C H A P T E R 1 2

The Built-In Functions

336 Functional Operations

Description: Returns a single function, termed the disjunction of its argument functions.
The disjunction accepts any number of arguments and operates by applying
the predicates, in order, to the arguments. If any of the predicates returns true,
the remaining predicates (if any) are not applied, and the true result is
returned. Otherwise, all the predicates will be applied, and #f returned.

A disjunction is similar to an | expression of calls to the predicates.

define constant nonzero? = disjoin(positive?, negative?);

nonzero?(4)

 ⇒ #t

conjoin [Function] 12

Returns a function that expresses the conjunction of one or more predicates.

Signature: conjoin predicate1 #rest more-predicates ⇒ function

Arguments: predicate1 An instance of <function>.

more-predicates
Instances of <function>.

Values: function An instance of <function>.

Description: Returns a single function, termed the conjunction of its argument functions.
The conjunction accepts any number of arguments and operates by applying
the predicates, in order, to the arguments. If any of the predicates returns #f,
the remaining predicates (if any) are not applied and #f is immediately
returned. Otherwise, all the predicates will be applied, and the result of the last
application is returned.

A conjunction is similar to an & expression of calls to the predicates.

choose(conjoin(positive?, integral?), #(-1, -3, 5, -3.7, 3.5, 7))

 ⇒ #(5, 7)

curry [Function] 12

Returns a function based on an existing function and a number of default
initial arguments.

C H A P T E R 1 2

The Built-In Functions

Functional Operations 337

Signature: curry function #rest curried-arguments ⇒ new-function

Arguments: function An instance of <function>.

curried-arguments
Instances of <object>.

Values: new-function An instance of <function>.

Description: Returns a function that applies function to curried-arguments plus its own
arguments, in that order. For example curry (\>, 6) is a predicate that
returns true for values less than 6; curry (\=, "x") is a predicate that tests
for equality with the string "x"; curry (\+, 1) is an incrementing function;
curry (concatenate, "set-") is a function that concatenates the string
"set-" to any additional sequences it is passed.

define constant all-odd? = curry(every?, odd?)

all-odd?(list(1, 3, 5))

 ⇒ #t

define constant less-than-10? = curry(\>, 10)

less-than-10?(4)

 ⇒ #t

rcurry [Function] 12

Returns a function based on an existing function and a number of default final
arguments.

Signature: rcurry function #rest curried-arguments ⇒ new-function

Arguments: function An instance of <function>.

curried-arguments
Instances of <object>.

Values: new-function An instance of <function>.

Description: Returns a function that applies function to curried-arguments plus its own
arguments, with the curried-arguments occuring last.

C H A P T E R 1 2

The Built-In Functions

338 Functional Operations

rcurry (“right” curry) operates just like curry, except it allows the rightmost
arguments of function to be specified in advance, rather than the leftmost
arguments. For example, rcurry (\>, 6) is a predicate that returns true for
values greater than 6.

define constant number? = rcurry(instance?, <number>)

number?(4)

 ⇒ #t

number?("string")

 ⇒ #f

define constant greater-than-10? = rcurry(\>, 10)

greater-than-10?(4)

 ⇒ #f

always [Function] 12

Returns a function that always returns a particular object.

Signature: always object ⇒ function

Arguments: object An instance of <object>.

Values: function An instance of <function>.

Description: Returns a function that can be called with any number of arguments. The
function ignores its arguments and always returns object.

define constant menu = always("spam!")

menu("today")

 ⇒ "spam!"

menu("tomorrow")
 ⇒ "spam!"

menu(4, 5, 6)

 ⇒ "spam!"

C H A P T E R 1 2

The Built-In Functions

Function Application 339

Function Application 12

apply [Function] 12

Applies a function to arguments.

Signature: apply function argument #rest more-arguments ⇒ #rest values

Arguments: function An instance of <function>.

argument An instance of <object> or, if there are no more-arguments, an
instance of <sequence>.

more-arguments
Instances of <object>. The last more-arguments must be an
instance of <sequence>.

Values: values Instances of <object>.

Description: Calls function and returns the values which function returns. The argument and
more-arguments supply the arguments to function. All but the last of argument
and more-arguments are passed to function individually. The last of argument and
more-arguments must be a sequence. This sequence is not passed as a single
argument to function. Instead, its elements are taken individually as arguments
to function.

apply(max, list(3, 1, 4, 1, 5, 9))

 ⇒ 9

apply(min 5, 7 list(3, 1, 4))

 ⇒ 1

define constant make-string =

 method (#rest init-args) => string :: <string>;

 apply(make, <string>, init-args)

 end;

make-string(fill: 'a', size: 10)

 ⇒ "aaaaaaaaaa"

C H A P T E R 1 2

The Built-In Functions

340 Reflective Operations on Functions

Reflective Operations on Functions 12

generic-function-methods [Function] 12

Returns the methods of a generic function.

Signature: generic-function-methods generic-function ⇒ sequence

Arguments: generic-function
An instance of <generic-function>.

Values: sequence An instance of <sequence>. Each element in the sequence is an
instance of <method>.

Description: Returns a sequence of all of the methods in generic-function. The order of the
methods in the sequence is not significant. The sequence returned should never
be destructively modified. Doing so may cause unpredictable behavior.

If generic-function is sealed, an implementation may choose not to return a
sequence of methods, but instead signal an error of type
<sealed-object-error>.

add-method [Function] 12

Adds a method to a generic function.

Signature: add-method generic-function method ⇒ new-method old-method

Arguments: generic-function
An instance of <generic-function>.

method An instance of <method>.

Values: new-method An instance of <method>.

old-method #f or an instance of <method>.

Description: Adds method to generic-function, thereby modifying the generic-function.

C H A P T E R 1 2

The Built-In Functions

Reflective Operations on Functions 341

Programs do not commonly call add-method directly. It is called by define
method.

If you add a method to a generic function, and the generic function already has
a method with the exact same specializers, then the old method is replaced
with the new one.

A single method may be added to any number of generic functions.

add-method returns two values. The first is the new method. The second will
be either the method in generic-function which is being replaced by method, or it
will be #f if no method is being replaced.

add-method may signal an error of type <sealed-object-error> if
adding the method or replacing an existing method would cause a sealing
violation.

generic-function-mandatory-keywords [Function] 12

Returns the mandatory keywords of a generic function, if any.

Signature: generic-function-mandatory-keywords generic-function ⇒ keywords

Arguments: generic-function
An instance of <generic-function>.

Values: keywords The object #f or an instance of <collection>.

Description: If generic-function accepts keyword arguments, returns a collection of the
mandatory keywords for generic-function. This collection will be empty if the
generic function accepts keywords but does not have any mandatory
keywords. It returns #f if generic-function does not accept keyword arguments.

The collection returned should never be destructively modified. Doing so may
cause unpredictable behavior.

function-specializers [Function] 12

Returns the specializers of a function.

Signature: function-specializers function ⇒ sequence

C H A P T E R 1 2

The Built-In Functions

342 Reflective Operations on Functions

Arguments: function An instance of <function>.

Values: sequence An instance of <sequence>. The elements of the sequence are
instances of <type>.

Description: Returns a sequence of the specializers for function. The length of the sequence
will equal the number of required arguments of function. The first element of
the sequence will be the specializer of the first argument of function, the second
will be the specializer of the second argument, etc.

The sequence returned should never be destructively modified. Doing so may
cause unpredictable behavior.

function-arguments [Function] 12

Returns information about the arguments accepted by a function.

Signature: function-arguments function ⇒ required-number rest-boolean kwd-sequence

Arguments: function An instance of <function>.

Values: required-number
An instance of <integer>.

rest-boolean An instance of <boolean>.

kwd-sequence
Either #f or the symbol #”all” or an instance of
<collection> whose elements are instances of <keyword>.

Description: Returns three values:

■ required-number is the number of required arguments accepted by the
function.

■ rest-boolean indicates whether the function accepts a variable number of
arguments.

■ kwd-sequence indicates whether the function accepts keyword arguments. If
the value is #f then the function does not accept keyword arguments.
Otherwise, the function does accept keyword arguments, and the value is
either a collection of the keywords which are permissible for any call to the

C H A P T E R 1 2

The Built-In Functions

Reflective Operations on Functions 343

function, or the symbol #”all” if all keywords are permitted by the
function.

Note that particular calls to a generic function may accept additional keywords
not included in the third value returned by function-arguments, by virtue
of their being recognized by applicable methods.

function-return-values [Function] 12

Returns information about the values returned by a function.

Signature: function-return-values function ⇒ return-value-types rest-return-value

Arguments: function An instance of <function>.

Values: return-value-types
An instance of <sequence>. The elements of the sequence are
instances of <type>.

rest-return-value
An instance of <type> or #f.

Description: Returns two values:

■ return-value-types is a sequence of the types of values returned by the
function. The length of the sequence equals the number of required return
values of the function. The first element of the sequence is the type of the
first return value, the second is the type of the second return value, etc. This
sequence returned should never be destructively modified. Doing so may
cause unpredictable behavior.

■ rest-return-value is a indicates whether the function returns a variable
number of values and, if so, the type of values which may be returned after
the required return values. If the function does not return a variable number
of values, #f is returned; otherwise a type is returned.

applicable-method? [Function] 12

Tests if a function is applicable to sample arguments.

Signature: applicable-method? function #rest sample-arguments ⇒ boolean

C H A P T E R 1 2

The Built-In Functions

344 Reflective Operations on Functions

Arguments: function An instance of <function>.

sample-arguments
Instances of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if function is a method or contains a method that would be
applicable to sample-arguments.

sorted-applicable-methods [Function] 12

Returns all the methods in a generic function that are applicable to sample
arguments, sorted in order of specificity.

Signature: sorted-applicable-methods generic-function #rest sample-arguments
 ⇒ sorted-methods unsorted-methods

Arguments: generic-function
An instance of <generic-function>.

sample-arguments
Instances of <object>.

Values: sorted-methods
An instance of <sequence>. Elements of the sequence are
instances of <method>.

unsorted-methods
An instance of <sequence>. Elements of the collection are
instances of <method>.

Description: Returns two sequences that, taken together, contain the methods in
generic-function that are applicable to the sample-arguments. sorted-methods
contains methods that are more specific than every method that follows them.
unsorted-methods begins at the first point of ambiguity; it contains the methods
that cannot be sorted.

The sequences returned should never be destructively modified. Doing so may
cause unpredictable behavior.

C H A P T E R 1 2

The Built-In Functions

Reflective Operations on Functions 345

find-method [Function] 12

Returns the method in a generic function that has particular specializers.

Signature: find-method generic-function specializers ⇒ found-method

Arguments: generic-function
An instance of <generic-function>.

specializers An instance of <sequence>. Elements of the sequence are
instances of <type>.

Values: found-method #f or an instance of <method>.

Description: Returns the method in generic-function that has the specializers in specializers as
its specializers. The specializers must match exactly for a method to be
returned.

If generic-function is sealed, an implementation may choose to signal an error of
type <sealed-object-error> rather than return a value.

remove-method [Function] 12

Removes a method from a generic function.

Signature: remove-method generic-function method ⇒ method

Arguments: generic-function
An instance of <generic-function>.

method An instance of <method>.

Values: method An instance of <method>.

Description: Removes method from generic-function and returns method.

This operation modifies the generic-function.

remove-method will signal an error if method is not in generic-function. If
generic-function is sealed, or if method is in an inert domain of generic-function ,
then an error of type <sealed-object-error> is signaled.

C H A P T E R 1 2

The Built-In Functions

346 Operations on Conditions

Operations on Conditions 12

Signaling Conditions 12

signal [Function] 12

Signals a condition.

Signatures: signal condition ⇒ values
signal string #rest arguments ⇒ values

Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>.

arguments Instances of <object>.

Values: values Instance of <object>.

Description: Signals the condition, trying each active dynamic handler, the most recent first.
If all dynamic handlers decline, signal calls default-handler(condition).
If a handler returns, all the values that it returned are returned from signal. If
signal returns when condition’s recovery protocol does not allow returning,
some handler has violated protocol; signal does not check for this error. If
condition is a restart, the caller of signal should always assume that it might
return.

The second form signals a condition of type <simple-warning>.

error [Function] 12

Signals a non-recoverable error.

Signatures: error condition ⇒ {will never return}
error string #rest arguments ⇒ {will never return}

C H A P T E R 1 2

The Built-In Functions

Operations on Conditions 347

Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>.

arguments Instances of <object>.

Values: None. error will never return.

Description: error is similar to signal but never returns; if a handler returns, error
invokes the debugger immediately. error is used to make it clear that a
program does not expect to receive control again after signaling a condition
and might enable the compiler to generate slightly more compact code.

The second form signals a condition of type <simple-error>.

cerror [Function] 12

Signals a correctable error.

Signatures: cerror restart-description condition ⇒ false
cerror restart-description string #rest arguments ⇒ false

Arguments (1): restart-description
An instance of <string>, interpreted as a format string.

condition An instance of <condition>.

Arguments (2): restart-description
An instance of <string>, interpreted as a format string.

string An instance of <string>.

arguments Instances of <object>.

Values: false #f.

Description: cerror is the same as error but first establishes a handler for
<simple-restart>, with a format string of restart-description and format
arguments of a sequence containing the arguments.

If the restart handler is invoked, cerror returns #f; otherwise, cerror never
returns. If cerror returns, the program should take the corrective actions

C H A P T E R 1 2

The Built-In Functions

348 Operations on Conditions

promised in the restart-description. cerror is the standard way to signal
correctable errors when no special class of restart condition is required.

break [Function] 12

Invokes the debugger.

Signatures: break condition ⇒ false
break string #rest arguments ⇒ false
break ⇒ false

Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>, interpreted as a format string.

arguments Instances of <object>, interpreted as format arguments.

Arguments (3): None.

Values: false #f.

Description: Obtains a condition in the same way as signal but then invokes the debugger
immediately without signaling first. break establishes a <simple-restart>
so the debugger can continue execution. This is useful for breakpoints. break
always returns #f. With no arguments, a default message string is used.

check-type [Function] 12

Checks an object to ensure that it is an instance of a specified type.

Signature: check-type value type ⇒ value

Arguments: value An instance of <object>.

type An instance of <type>.

Values: value An instance of <object>.

Description: Checks value to ensure that it is an instance of type, and signal an error of type
<type-error> if it is not.

C H A P T E R 1 2

The Built-In Functions

Operations on Conditions 349

abort [Function] 12

Aborts and never returns.

Signature: abort

Arguments: None.

Values: None. abort will never return.

Description: Performs error(make (<abort>)).

This function is provided as a convenient shortcut. The call is to error, rather
than to signal, to guarantee that abort will never return.

Handling Conditions 12

default-handler [Open Generic Function] 12

Called if no dynamic handler handles a condition.

Signature: default-handler condition ⇒ values

Arguments: condition An instance of <condition>.

Values: values Instances of <object>.

Description: Called if no dynamic handler handles a condition.

default-handler condition ⇒ false [G.F. Method] 12

A predefined method on <condition> simply returns #f.

default-handler serious-condition ⇒ {does not return} [G.F. Method] 12

A predefined method on <serious-condition> invokes an
implementation-defined debugger.

C H A P T E R 1 2

The Built-In Functions

350 Operations on Conditions

default-handler warning ⇒ false [G.F. Method] 12

A predefined method on <warning> prints the warning’s message in an
implementation-defined way and then returns #f.

default-handler restart ⇒ {does not return} [G.F. Method] 12

A predefined method on <restart> signals an error.

restart-query [Open Generic Function] 12

Called to query the user and restart.

Signature: restart-query restart ⇒ values

Arguments: restart An instance of <restart>.

Values: values Instances of <object>.

Description: Engages the interactive user in a dialog and stores the results in slots of restart.

This function is designed to be called from a handler, after making a restart and
before signaling it. The debugger uses restart-query, for example. There is
a default method for <restart> which does nothing.

return-query [Open Generic Function] 12

Called to query the user and return.

Signature: return-query condition ⇒ values

Arguments: condition An instance of <condition>.

Values: values Instances of <object>.

Description: If the recovery protocol of condition allows returning values, this engages the
program user in a dialog and returns the results as any number of values,
which the handler should return.

C H A P T E R 1 2

The Built-In Functions

Operations on Conditions 351

return-query should not be called if return-allowed? returns #f.
Programs which define condition classes whose recovery protocol allows
returning values should ensure that there is an appropriate method for this
function defined on or inherited by the condition class.

Introspection on Conditions 12

do-handlers [Function] 12

Applies a function to all dynamically active handlers.

Signature: do-handlers function ⇒ false

Arguments: function An instance of <function>.

Values: false #f.

Description: Applies function to all dynamically active handlers, the most recently
established first. function receives four arguments: type, test, function, and
init-arguments. The arguments describe a dynamically active handler. All
arguments have dynamic extent and must not be modified. test defaults to a
function that always returns #t. init-arguments will be an empty sequence if it
was not supplied by the handler.

return-allowed? [Open Generic Function] 12

Returns true if a condition’s recovery protocol allows returning values.

Signature: return-allowed? condition ⇒ boolean

Arguments: condition An instance of <condition>.

Values: boolean An instance of <boolean>.

Description: Returns #t if the recovery protocol of condition allows returning values, or #f if
it does not.

C H A P T E R 1 2

The Built-In Functions

352 Operations on Conditions

There is a default method for <condition> that returns #f. Programs which
define condition classes whose recovery protocol allows returning values
should ensure that there is an appropriate method for this function defined on
or inherited by the condition class.

return-description [Open Generic Function] 12

Returns a description of a condition’s returned values.

Signature: return-description condition ⇒ description

Arguments: condition An instance of <condition>.

Values: description #f or an instance of <string> or an instance of <restart>.

Description: If the recovery protocol of this condition allows returning values,
return-description returns a description of the meaning of returning
values.

This description can be a restart, a string, or #f. return-description should
not be called if return-allowed? returns #f. If you define your own
condition class whose recovery protocol allows returning values, you need to
define a method for return-description unless the inherited method is
suitable.

condition-format-string [Function] 12

Returns the format string of a simple condition.

Signature: condition-format-string simple-condition ⇒ format-string

Arguments: simple-condition
An instance of <simple-error>, <simple-warning>, or
<simple-restart>.

Values: format-string An instance of <string>.

Description: Returns the format string that was supplied as an initialization argument when
the simple-condition was created.

C H A P T E R 1 2

The Built-In Functions

Operations on Conditions 353

condition-format-arguments [Function] 12

Returns the format arguments of a simple condition.

Signature: condition-format-arguments simple-condition ⇒ format-args

Arguments: simple-condition
An instance of <simple-error>, <simple-warning>, or
<simple-restart>.

Values: format-args An instance of <sequence>.

Description: Returns the sequence of format arguments that was supplied as an
initialization argument when the simple-condition was created.

type-error-value [Function] 12

Returns the value which was not of the expected type.

Signature: type-error-value type-error ⇒ object

Arguments: type-error An instance of <type-error>.

Values: object An instance of <object>.

Description: Returns the value which was not of the expected type, and thereby led to the
type error.

type-error-expected-type [Function] 12

Returns the expected type of the type check that led to the type error.

Signature: type-error-expected-type type-error ⇒ type

Arguments: type-error An instance of <type-error>.

Values: type An instance of <type>.

Description: Returns the expected type of the type check that led to the type error.

C H A P T E R 1 2

The Built-In Functions

354 Operations on Conditions

C H A P T E R 1 3

Contents

355

Contents

Figure 13-0
Listing 13-0
Table 13-0

13 Other Built-In Objects

Other Built-In Objects 357

This document was created with FrameMaker 4.0.4

C H A P T E R 1 3

356

Contents

C H A P T E R 1 3

Other Built-In Objects

357

Other Built-In Objects 13

Other Built-In Objects 13

#t

[<boolean>] 13

The canonical true value.

#f

[<boolean>] 13

The false value.

$permanent-hash-state

[<object>] 13

A hash state that is always valid.

This is an implementation-dependent hash state that indicates that the
associated hash id is always valid, and does not depend on any mutable
property of the object that can be changed without a visible modification to the
object.

#()

[<empty-list>] 13

The empty list.

This document was created with FrameMaker 4.0.4

C H A P T E R 1 3

Other Built-In Objects

358

Other Built-In Objects

C H A P T E R 1 4

Contents

359

Contents

Figure 14-0
Listing 14-0
Table 14-0

14 The Built-In Macros and Special
Operators

Overview 361
Definitions 361
Local Declarations 377
Statements 382
Special Operators 397

This document was created with FrameMaker 4.0.4

C H A P T E R 1 4

360

Contents

C H A P T E R 1 4

Overview

361

The Built-In Macros and Special Operators 14

Overview 14

This chapter contains descriptions of the built-in macros, special definitions,
and special operators defined by Dylan.

The syntax used in this chapter is described in “Manual Notation” on page 6.

Definitions 14

Definitions are used to declare the overall structure of a program. They often
define one or more module bindings, but do not always do so. Definitions can
only appear at top level in a program. Definitions do not return values.

Table 14-1

Definitions

Macro Description Page

define variable

Defines and initializes a variable binding
in the current module.

362

define constant

Defines and initializes a constant binding
in the current module.

363

define generic

Defines a constant binding in the current
module and initializes it to a new generic
function.

364

define method

Adds a method to a generic function, and
potentially defines a constant binding in
the current module containing a new
generic function.

365

define class

Defines a constant binding in the current
module and initializes it to a new class.

366

define module

Defines and names a module, describing
the imports and exports of the module.

369

This document was created with FrameMaker 4.0.4

C H A P T E R 1 4

The Built-In Macros and Special Operators

362

Definitions

define variable

[Definition] 14

Defines and initializes a variable binding in the current module.

Macro Call:

define

 {

adjective

}*

variable

variables

=

init

Arguments:

adjective

unreserved-name

bnf

. The adjectives allowed are implementation
dependent.

variables

variable

bnf

 |

(

variable-list

bnf

)

init

expression

bnf

Description:

define variable

 creates variable bindings in the current module.

The values returned by

init

 are used to initialize the bindings. The first value
returned is bound to the first

variable

, the second value to the second

variable

,
etc. The last

variable

 may be preceded by

#rest

, in which case it is bound to a
sequence containing all the remaining values.

If more than one binding is defined, the

variables

 are enclosed in parentheses
and separated by commas.

define variable *elapsed-time* = 0;

define variable (*whole-part*, *remainder*) = truncate(*amount*);

define variable (*first-value*, #rest *rest-values*)

 = get-inital-orders();

define library

Defines and names a library, describing
the imports and exports of the library.

374

define domain

Restricts the ways in which a generic
function and set of types can be extended,
thereby enabling additional error
checking and compiler optimization.

376

define macro

Defines a constant module binding
containing a macro.

377

Table 14-1

Definitions (continued)

Macro Description Page

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions

363

Module bindings may be specialized. This ensures that their value will always
be of a given type. An attempt to initialize or assign the binding to a value not
of that type will signal an error of type

<type-error>

.

define variable *elapsed-time* :: <integer> = 0;

define variable *front-window* :: union (<window>, singleton(#f))

 = initial-front-window();

define variable (*whole-part* :: <integer>, *remainder* ::

<real>)

 = truncate(*amount*);

define constant

[Definition] 14

Defines and initializes a constant binding in the current module.

Macro Call:

define

 {

adjective

 }*

constant

constants

=

init

Arguments:

adjective

unreserved-name

bnf

. The adjectives allowed are implementation
dependent.

constants

variable

bnf

 |

(

variable-list

bnf

)

init

expression

bnf

Description:

Creates constant bindings in the current module.

The values returned by

init

 are used to initialize the constant bindings. The
first value returned is bound to the first

constant

, the second value to the second

constant

, etc. The last

constant

 may be preceded by

#rest

, in which case it is
bound to a sequence containing all the remaining values.

If more than one

constant

 is defined, the

constants

 are enclosed in parentheses
and separated by commas.

define constant $start-time = get-current-time();

define constant $pi = 3.14159;

define constant ($whole-pie, $piece-pie) = truncate($pi);

C H A P T E R 1 4

The Built-In Macros and Special Operators

364

Definitions

Module constants may be specialized. This ensures that their value is of a
given type. An attempt to initialize the constant to a value not of that type will
signal an error of type

<type-error>

.

define constant $start-time :: <integer> = get-current-time();

A constant binding cannot be assigned a new value. However, the object
which is the value of the constant binding is not necessarily itself immutable.
For example, if a constant binding contains a sequence, the elements of the
sequence may be settable.

define generic [Definition] 14

Defines a constant binding in the current module and initializes it to a new
generic function.

Macro Call:

define

 {

adjective

 }*

generic

name parameter-list

 [

options

]

Arguments:

adjective

unreserved-name

bnf

. The allowed adjectives are

sealed

 and

open

. These adjectives are mutually exclusive. The default is

sealed

. Additional implementation-defined adjectives may be
supported.

name

variable-name

bnf

parameter-list

(

 [

parameters

bnf]) [=> values]

options comma-property-listbnf

values variablebnf | ([values-listbnf])

Description: define generic is used to define generic functions.

It creates a constant module binding with the name name, and initializes it to a
new generic function described by the adjectives, parameter-list and options.

The adjectives specify whether the generic function is sealed. A complete
description of generic function sealing is given in“Declaring Characteristics of
Generic Functions” on page 133.

The parameter-list specifies the parameters and return values of the generic
function and thereby constrains which methods may be added to it. For a

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 365

complete description of these constraints, see “Parameter List Congruency” on
page 91.

The options are alternating keywords and values. No options are defined by the
language. They may be supplied by individual implementations.

The following example defines a generic function of two required arguments
and one return value. All methods added to the generic function must also
take two arguments and return one value. The first argument will always be
specialized to a subtype of <animal>, the second argument will always be
specialized to a subtype of <number>, and the return value will always be
specialized to a subtype of <number>.

define generic cut-hair (subject :: <animal>, new-length ::

<number>)

 => (new-length :: <number>)

The use of the same name for a parameter and return value indicates that the
parameter is returned as the value. This is only a convention; it is not enforced
by the language.

The following example defines a generic function with one required parameter
and one mandatory keyword parameter, strength:. Methods added to the
generic function must have one required parameter, they must accept keyword
arguments, and they must permit the keyword argument strength:.

define generic brew (brand :: <coffee-brand>, #key strength)

 => (coffee :: <coffee>)

define method [Definition] 14

Adds a method to a generic function, and potentially defines a constant
binding in the current module containing a new generic function.

Macro Call: define { adjective }* method name parameter-list
 [body]
end [method] [name]

Arguments: adjective unreserved-namebnf. The allowed adjective is inert. Additional
implementation-defined adjectives may be supported.

name variable-namebnf

C H A P T E R 1 4

The Built-In Macros and Special Operators

366 Definitions

parameter-list
parameter-listbnf

body bodybnf

Description: define method creates a method and adds it to the generic function in name.
If the module binding name is not already defined, it is defined as with
define generic. Thus, define method will create a new generic function
or extend an old one, as needed.

The adjective allows a sealing declaration to be made about the generic function
to which the method is added. The effect of this adjective is described in
“Abbreviations for Define Inert Domain” on page 136.

The parameter-list describes the parameters and return values of the method,
including their number and type. The method can be called only with
arguments that match the types of the parameters, and the method will always
return values in the quantity and typed declared. Methods added to a generic
function must have parameter lists that are congruent with the generic
function’s parameter list. A complete description of parameter lists is given in
“Parameter Lists” on page 82.

When the method is called, new local bindings are created for the parameters,
initialized to the arguments of the call. The body is then executed in the
environment containing these bindings.

define method tune (device :: <radio>) => (station :: <station>)

 // method body goes here

end method tune

define class [Definition] 14

Defines a constant binding in the current module and initializes it to a new
class.

Macro Call: define { class-adjective }* class name ({ superclass } ,+)
 { slot-spec | init-arg-spec | inherited-slot-spec } ;*
end [class] [name]

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 367

Arguments: class-adjective
unreserved-namebnf. The allowed adjectives are abstract,
concrete, primary, free, sealed, and open. Additional
implementation-dependent class-adjectives may be supported.

name variable-namebnf

superclass expressionbnf

slot-spec { slot-adjective }* [allocation]
slot getter-name [:: type] [init-expression]
{ , slot-option }*

init-arg-spec [required] keyword symbolbnf [init-expression]
{ , init-arg-option }*

inherited-slot-spec
inherited slot getter-name [init-expression]
{ , inherited-option }*

slot-adjective unreserved-namebnf. Supported slot-adjectives are constant
and inert. Additional implementation-dependent
slot-adjectives may be supported.

allocation unreserved-namebnf. Supported allocations are instance,
class, each-subclass, and virtual. Additional
implementation-defined allocations may be supported.

getter-name variable-namebnf

type operandbnf

init-expression = expressionbnf

slot-option setter-option |
init-keyword-option |
required-init-keyword-option |
init-value-option |
init-function-option |
type-option

init-arg-option type-option |
init-value-option |
init-function-option

inherited-option
init-value-option |
init-function-option

setter-option setter: { variable-namebnf | #f }

C H A P T E R 1 4

The Built-In Macros and Special Operators

368 Definitions

init-keyword-option
init-keyword: symbolbnf

required-init-keyword-option
required-init-keyword: symbolbnf

init-value-option
init-value: expressionbnf

init-function-option
init-function: expressionbnf

type-option type: expressionbnf

Description: define class is used to define classes.

It creates a constant module binding with the name name, and initializes it to a
new class.

The class-adjectives provide sealing information about the class. Among the
adjectives, abstract and concrete are mutually exclusive, primary and
free are mutually exclusive, and sealed and open are mutually exclusive.
Additional implementation-defined adjectives may be supported. See
“Declaring Characteristics of Classes” on page 132 for a complete description
of these adjectives.

The superclasses are the classes from which the new class directly inherits. The
rules of inheritance are described in “Class Inheritance” on page 51 and
“Computing the Class Precedence List” on page 52.

The init-expression, required-init-keyword-option, init-value-option, and
init-function-option are all mutually exclusive in a single slot-spec, init-arg-spec,
or inherited-slot-spec.

Each slot-spec describes a slot specification in the class. Slot specifications are
described in “Slot Specifications” on page 57

Each init-arg-spec describes the handling of an initialization argument
specification of the class. Initialization argument specifications are described in
“Initialization Argument Specifications” on page 67.

Each inherited-slot-spec describes an inherited slot specification of the class.
Inherited slot specifications are described in “Inherited Slot Specifications” on
page 66.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 369

define module [Definition] 14

Defines and names a module, describing the imports and exports of the
module.

Macro Call: define module module-name
 { export-clause | create-clause |use-clause } ;*
end [module] [module-name]

Arguments: module-name namebnf

export-clause export { ordinary-namebnf } ,*

create-clause create { ordinary-namebnf } ,*

use-clause use used-module { ,option }*

used-module ordinary-namebnf

option import-option |

exclude-option |

prefix-option |

rename-option |

export-option

import-option import: all | { { variable-spec } ,* }

variable-spec namebnf [=> namebnf]

exclude-option exclude: { { namebnf } ,* }

prefix-option prefix: string-literalbnf

rename-option rename: { { namebnf => namebnf } ,* }

export-option export: all | { { namebnf } ,* }

Description: define module defines a module with the given name. It describes which
modules are used by the module being defined, which bindings are imported
from the used modules, and which bindings are exported by the module being
defined.

Circular use relationships among modules are not allowed. The graph of the
module-uses-module relation must be directed and acyclic.

Like other definitions, module definitions are only allowed at top level. Like
all constituents, module definitions are contained in a module. The names of

C H A P T E R 1 4

The Built-In Macros and Special Operators

370 Definitions

bindings being imported and exported in a module definition refer to bindings
in the module being defined and the modules being used. These are not
affected by the module which contains the module definition.

There is no prohibition against macros which expand into module definitions.

■ module-name is the name of the module being defined. Note that no binding
is created for this name. The namespaces of modules, libraries, and bindings
are distinct. The module name is scoped within the library containing the
module.

■ An export-clause specifies bindings that are to be exported from the module
being defined. Each name is the name of one such binding. These bindings
must be defined by a definition in the module being defined. It is an error if
any of the bindings were imported from other modules. It is allowed for
the same name to appear more than once, since this is sometimes useful for
documentation purposes.

■ A create-clause specifies that the named bindings are to be declared owned by
and exported from the module being defined. Each name is the name of a
binding to declare and export. These bindings must not be defined by a
definition in the module being defined, and they must not be imported from
another module. They must be defined by a definition in a module which
uses the module being defined. It is allowed for the same name to appear
more than once, since this is sometimes useful for documentation purposes.

■ Each use-clause describes a set of bindings to be imported from another
module. There may be multiple use clauses and there may even be multiple
use clauses importing from the same module. If there are multiple use
clauses importing from the same module, the bindings imported are the sum
of the binding imported by each use clause. Because of renaming, it is
possible for the same binding to imported multiple times under different
names. This is not an error.
Within a use clause, the used-module is the name of the module being used,
and the options control which bindings are to be imported from that
module, whether and how they should be renamed, and whether they
should be rexported from the module being defined. Each of these options
applies within the scope of the particular use clause, and does not affect the
behavior of other use clauses (even if the other use clauses indicate the same
module). The various options may each appear no more than once in a
single use clause. They may appear in any order.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 371

n An import-option describes which bindings should be imported. It can be
the name all, or a series of comma-delimited variable-specs enclosed in
curly braces. The default is all, indicating that all bindings should be
imported. If a series of variable-specs is specified, only the indicated
variables are imported.

n A variable-spec is a name, or two names separated by an arrow. In the first
form, the binding has the same name in the module being used and the
module being defined. In the second form the binding is renamed as it is
imported. The name preceding the arrow is the name of the binding in
the module being used, and the name following the arrow is the name of
the binding in the module being defined.

n An exclude-option indicates bindings which should not be imported from
the module being used. The default is the empty set. This option may
only specify a non-empty set if the import option is all.

n A prefix-option indicates a prefix to be given to all binding names as they
are imported. This option can be overriden for individual bindings by
supplying a renaming in a rename option or import option. The default
prefix option is the empty string.

n A rename-option indicates how individual bindings should be renamed as
they are imported. It is a comma-delimited series of entries surrounded
by curly braces. Each entry is a pair of names separated by an arrow. The
name preceding the arrow is the name of the binding in the module being
used, and the name following the arrow is the name of the binding in the
module being defined. The default for this option is the empty set.

n An export-option indicates which imported bindings should be rexported
from the module being defined. It can be the name all, or a series of
comma-delimited names enclosed in curly braces. Each name is the name
of the binding in the module being defined as well as the name under
which it will be exported. (There is no option to rename on export) Each
binding indicated must have been imported by this use clause. It is
allowed for the same name to appear more than once, as this is
sometimes useful for documentation purposes. all indicates that all the
bindings imported by this use clause should be exported. The default
value for this option is the empty set.

define module graphics

 use dylan;

 create draw-line,

 erase-line,

C H A P T E R 1 4

The Built-In Macros and Special Operators

372 Definitions

 invert-line,

 skew-line

 frame-rect,

 fill-rect,

 erase-rect,

 invert-rect;

end module graphics;

define module lines

 use dylan;

 use graphics,

import: {draw-line,

 erase-line,

 invert-line,

 skew-line};

end module lines;

define module rectangles

 use dylan;

 use graphics,

prefix: "graphics$",

exclude: {skew-line};

end module rectangles;

define module dylan-gx

 use dylan, export: all;

 use graphics,

rename: {skew-line => warp-line},

 export: all;

end module dylan-gx;

The modules created by these module declarations would have access to
bindings with the following names:

graphics

draw-line

erase-line

invert-line

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 373

skew-line

frame-rect

fill-rect

erase-rect

invert-rect

plus all the bindings in the Dylan module

lines

draw-line

erase-line

invert-line

skew-line

plus all the bindings in the Dylan module

rectangles

graphics$draw-line

graphics$erase-line

graphics$invert-line

graphics$frame-rect

graphics$fill-rect

graphics$erase-rect

graphics$invert-rect

plus all the bindings in the Dylan module

dylan-gx

draw-line

erase-line

invert-line

warp-line

frame-rect

fill-rect

erase-rect

invert-rect

plus all the bindings in the Dylan module

The lines and rectangles modules do not export any variables. They are
presumably used to provide definitions for the variables created and exported
by the graphics modules. The difference between the graphics module

C H A P T E R 1 4

The Built-In Macros and Special Operators

374 Definitions

and the dylan-gx module is that one variable is renamed, and the dylan-gx
module exports the variables which it imports from the dylan module, while
the graphics module does not.

define library [Definition] 14

Defines and names a library, describing the imports and exports of the library.

Macro Call: define library library-name
 { export-clause | use-clause } ;*
end [library] [library-name]

Arguments: library-name namebnf

use-clause use used-library { ,option }*

export-clause export { ordinary-namebnf } ,*

used-library ordinary-namebnf

option import-option |

exclude-option |

prefix-option |

rename-option |

export-option

import-option import: all | { { module-spec } ,* }

module-spec namebnf [=> namebnf]

exclude-option exclude: { { namebnf } ,* }

prefix-option prefix: string-literalbnf

rename-option rename: { { namebnf => namebnf } ,* }

export-option export: all | { { namebnf } ,* }

Description: define library defines a library with the given name. It describes which
libraries are used by the library being defined, which modules are imported
from the used libraries, and which modules are exported by the library being
defined.

Circular use relationships among libraries are not allowed. The graph of the
library-uses-library relation must be directed and acyclic.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Definitions 375

Like other definitions, library definitions are only allowed at top level. Like all
constituents, library definitions are contained in a module. The names of
modules being imported and exported by a library definition do not refer to
bindings, and are not affected by the environment in which the library
definition occurs.

There is no prohibition against macros which expand into library definitions.

■ library-name is the name of the library being defined. Note that no binding is
created for this name. The namespaces of libraries, modules, and bindings
are distinct. The library name is scoped along with the other library names
in the program.

■ An export-clause specifies modules that are to be exported from the library
being defined. Each name is the name of one such module. It is an error if
any of the modules were imported from other libraries. It is allowed for the
same name to appear more than once, since this is sometimes useful for
documentation purposes.

■ Each use-clause describes a set of modules to be imported from another
library. There may be multiple use clauses and there may even be multiple
use clauses importing from the same library. If there are multiple use
clauses importing from the same library, the modules imported are the sum
of the modules imported by each use clause. Because of renaming, it is
possible for the same module to imported multiple times under different
names. This is not an error.
Within a use clause, the used-library is the name of the library being used.
The mechanism by which this name is associated with another library is
implementation defined.
The options control which modules are to be imported from that library,
whether and how they should be renamed, and whether they should be
rexported from the library being defined. Each of these options applies
within the scope of the particular use clause, and does not affect the
behavior of other use clauses (even if the other use clauses indicate the same
library). The various options may each appear no more than once in a
single use clause. They may appear in any order.

n An import-option describes which modules should be imported. It can be
the name all, or a series of comma-delimited module-specs enclosed in
curly braces. The default is all, indicating that all modules should be
imported. If a series of module-specs is specified, only the indicated
modules are imported.

C H A P T E R 1 4

The Built-In Macros and Special Operators

376 Definitions

n A module-spec is a name, or two names separated by an arrow. In the first
form, the module has the same name in the library being used and the
library being defined. In the second form the module is renamed as it is
imported. The name preceding the arrow is the name of the module in
the library being used, and the name following the arrow is the name of
the module in the library being defined.

n An exclude-option indicates modules which should not be imported from
the library being used. The default is the empty set. This option may
only specify a non-empty set if the import option is all.

n A prefix-option indicates a prefix to be given to all module names as they
are imported. This option can be overriden for individual modules by
supplying a renaming in the rename option or import option. The default
prefix option is the empty string.

n A rename-option indicates how individual modules should be renamed as
they are imported. It is a comma-delimited series of entries surrounded
by curly braces. Each entry is a pair of names separated by an arrow. The
name preceding the arrow is the name of the module in the library being
used, and the name following the arrow is the name of the module in the
library being defined. The default for this option is the empty set.

n An export-option indicates which imported modules should be rexported
from the library being defined. It can be the name all, or a series of
comma-delimited names enclosed in curly braces. Each name is the name
of the module in the library being defined as well as the name under
which it will be exported. (There is no option to rename on export) Each
module indicated must have been imported by this use clause. It is
allowed for the same name to appear more than once, as this is
sometimes useful for documentation purposes. all indicates that all the
modules imported by this use clause should be exported. The default
value for this option is the empty set.

define inert domain [Definition] 14

Restricts the ways in which a generic function and set of types can be extended,
thereby enabling additional error checking and compiler optimization.

Macro Call: define inert domain generic-function ({ type } ,*)

C H A P T E R 1 4

The Built-In Macros and Special Operators

Local Declarations 377

Arguments: generic-function
variable-namebnf

type expressionbnf

Description: define inert domain seals the specified generic-function over the domain
indicated by the types. For a complete description of the rules governing
define inert domain and the implications of a define inert domain
definition, see “Define Inert Domain” on page 133.

■ generic-function is the name of a module binding containing an explicitly
defined generic function.

■ Each type is an expression, the value of which must be a type. The number of
types must be the same as the number of required arguments accepted by
generic-function.

define macro [Special Definition] 14

Defines a constant module binding containing a macro.

Macro Call: define macro macro-definition

Arguments: macro-definition
macro-definitionbnf

Description: See Chapter 10, “Macros,” for a complete description of the macro system.

Note that define macro is not a defining macro but a special definition. It is
not named by a binding, and so it cannot being excluded or renamed using
module operations.

Local Declarations 14

Local declarations are used to create bindings or install handlers that are active
for the remainder of the innermost body containing the declaration. Bindings
created by local declarations can be referenced only in the remaining program
text of the body. Handlers installed are active while the execution of the

C H A P T E R 1 4

The Built-In Macros and Special Operators

378 Local Declarations

remainder of the body is active, which includes the time during which any
functions called from the remainder of the body are active.

let [Local Declaration] 14

Creates and initializes new local bindings within the smallest enclosing implicit
body.

Macro Call: let variables = init ;

Arguments: variables variablebnf | (variable-listbnf)

init expressionbnf

Description: let creates local bindings for the variables, and initializes them to the values
returned by init. The bindings are visible for the remainder of the smallest
enclosing implicit body.

The first value returned by the init is bound to the first variable, the second
value to the second variable, etc. The last variable may be preceded by #rest, in
which case it is bound to a sequence containing all the remaining values.

Each variable is a variable-name or a variable-name followed by a specializer.

Table 14-2 Local Declarations

Macro Description Page

let Creates and initializes new local bindings
within the smallest enclosing implicit
body.

378

local Creates new local bindings within the
smallest enclosing implicit body and
initializes them to local methods which
can be self-recursive and
mutually-recursive.

379

let handler Establishes a condition handler for the
duration of the execution of smallest
enclosing implicit body.

380

C H A P T E R 1 4

The Built-In Macros and Special Operators

Local Declarations 379

If more than one binding is defined, the variables are enclosed in parentheses
and separated by commas.

let start = 0;

let (whole-part, remainder) = truncate(amount);

let (first-value, #rest rest-values) = get-inital-values();

Local variables may be specialized. This ensures that their value will always be
of a given type. An attempt to initialize or assign the variable to a value not of
that type will signal an error of type <type-error>.

let elapsed-time :: <integer> = 0;

let the-front-window :: <window> = front-window();

let(whole-part :: <integer>, remainder :: <real>) =

truncate(amount);

local [Local Declaration] 14

Creates new local bindings within the smallest enclosing implicit body and
initializes them to local methods which can be self-recursive and
mutually-recursive.

Macro Call: local { [method] name parameter-list [body] end [method] [name] } ,+

Arguments: name variable-namebnf

parameter-list
parameter-listbnf

body bodybnf

Description: local is creates local methods which may be mutually recursive and
self-recursive.

Each name creates a new local binding. The binding is initialized to a new
method specified by the parameter-list and body. In addition to being visible for
the remainder of the smallest enclosing implicit body, the bindings created for

C H A P T E R 1 4

The Built-In Macros and Special Operators

380 Local Declarations

the names are visible to the parameter-lists and bodies of all the methods created
by the local declaration.

The parameter-list is a standard method parameter list. A complete description
of parameter lists is given in “Parameter Lists” on page 82.

The body is an implicit body.

let handler [Local Declaration] 14

Establishes a condition handler for the duration of the execution of smallest
enclosing implicit body.

Macro Call: let handler condition = handler

Arguments: condition type | (type { ,option }*)

type expressionbnf

option test-option | init-option

test-option test: expressionbnf

init-option init-arguments: expressionbnf

handler expressionbnf

Description: let handler establishes a new condition handler which is in effect for the
duration of the execution of the remainder of the smallest enclosing implicit
body. Unlike the local declarations let and local, let handler does not
create any bindings.

■ The condition describes the conditions for which the handler is applicable.

n The type is the type of the applicable conditions. The handler will be
applicable to conditions that are general instances of type.

n The test-option is a function which is called to further test the applicability
of the handler. When a condition of type type is signaled, the test function
will be called with that condition as an argument. If the test returns true,
the handler is considered applicable to the condition. If the test returns
false, the handler is considered to be inapplicable to the condition. The
default value of this option is a function that always returns true. There
can be at most one test-option.
An example use for this feature is a restart handler for restarting only
from a particular condition object, for example restarting from an

C H A P T E R 1 4

The Built-In Macros and Special Operators

Local Declarations 381

unbound-slot error by setting the slot and retrying the invocation of the
accessor. The <set-and-continue> restart condition will have the
signaled <unbound-slot> condition in a slot, and the handler’s test will
check for it. (These class names are invented for this example and are not
part of the specification.)

n The init-option is a sequence of alternating keywords and objects which
can be used as initialization arguments to construct a condition to which
the handler is applicable. It defaults to an empty sequence. For example,
if the handler is a restart handler, a program could use the initialization
arguments to construct a restart. (The program would retrieve the
keyword/value pairs by calling do-handler.) There can be at most one
init-option.

■ The handler is function called to handle a condition that matches type and
passes test-option. The function should accept two arguments. The first
argument will be the condition being signaled, and the second argument
will be a next-handler function. The handler handles the condition by
taking a non-local exit, returning values according to the condition’s
recovery protocol, or tail-recursively calling signal of a restart. The
function can decline to handle the condition by tail-recursively calling the
next-handler function with no arguments.

test-option and handler are distinct so that handler applicability can be tested
without actually handling (which might take a non-local exit). One use for this
is constructing a list of available restart handlers.

There is no “condition wall,” i.e., when executing handler the set of available
handlers is not reset to the handlers that were in effect when the let handler
was entered.

 Implementations are encouraged to implement let handler in a way that
optimizes establishing a handler for both speed and space, even if that
increases the cost of signaling. The assumption is that most of the time a
handler will never be used, because the exception it is looking for will never
occur.

type, handler, test-option, and init-option are executed before execution of the rest
of the enclosing body begins.

C H A P T E R 1 4

The Built-In Macros and Special Operators

382 Statements

Statements 14

Statements are used to implement a variety of program constructs.

Many statements include an optional implicit body, which may contain one or
more constintuents separated by semicolons. When an implicit body is
executed, the expressions in the implicit body are executed in order (left to
right). The values of the implicit body are the values of the last expression. If
the optional implicit body is not present or contains no expressions, the return
value is #f.

Table 14-3 Statements

Macro Description Page

if Executes an implicit body if the value of a
test is true or an alternate if the test is
false.

383

unless Executes an implicit body unless the
value of a test is true.

385

case Executes a number of tests until one is
true, and then executes an implicit body
associated with the true test.

385

select Compares a target object to a series of
potential matches, and executes an
implicit body associated with the first
match found.

386

while Repeatedly executes a body until a test
expression is false.

388

until Repeatedly executes a body until a test
expression is true.

388

for Performs general iteration over a body,
updating bindings and performing end
tests on each iteration.

389

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 383

Conditionals 14

The following statements are used to perform conditional execution.

if [Statement] 14

Executes an implicit body if the value of a test is true or an alternate if the test
is false.

Macro Call: if (test) [consequent]
 { elseif (elseif-test) [elseif-consequent] }*
 [else [alternate]]
end [if]

Arguments: test expressionbnf

consequent bodybnf

elseif-test expressionbnf

elseif-consequent
bodybnf

alternate bodybnf

Values: Zero or more instances of <object>.

Description: if executes one or more expressions, executing and returning the values of a
body following the first test which returns true.

test is the first expression to be executed. If its value is true, if executes and
returns the values of the consequent. If the value of test is false, if proceeds
with the optional elseif-tests and alternate.

begin Executes expressions in a body, in order. 392

block Executes a body with several options for
non-standard flow of control.

392

method Creates and returns a method. 396

Table 14-3 Statements (continued)

Macro Description Page

C H A P T E R 1 4

The Built-In Macros and Special Operators

384 Statements

First the elseif clauses are tried in order. The first elseif-test is executed. If its
value is true, the corresponding elseif-consequent is executed and its values are
returned as the value of the if statement. If its value is false, the next elseif-test
is tried. This continues until a true elseif-test is found, or until there are no more
elseif clauses.

If the test and all the elseif-tests are false, the alternate is executed and its values
are returned as the value of the if statement. If there is no alternate, the if
statement returns #f.

if (x < 0)

 - x;

end if;

if (heads?(flip(coin)))

 start(black);

else

 start(white);

end if

if (player1.money <= 0)

 end-game(player1)

elseif (player2.money <= 0)

 end-game(player2)

else

 move(player1);

 move(player2);

end if

if (camel.humps = 1)

 "dromedary"

elseif (camel.humps = 2)

 "bactrian"

else

 "not a camel"

end if;

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 385

unless [Statement] 14

Executes an implicit body unless the value of a test is true.

Macro Call: unless (test)
 [body]
end [unless]

Arguments: test expressionbnf

body bodybnf

Values: Zero or more instances of <object>.

Description: unless executes test. If the value of test is false, then the body is executed and
its values are returned by unless. If the value of test is true, the body is not
executed and unless returns #f.

If there are no expressions in the body, then #f is returned.

unless(detect-gas? (nose))

 light(match)

end unless

case [Statement] 14

Executes a number of tests until one is true, and then executes an implicit body
associated with the true test.

Macro Call: case
 { test => consequent } *
 [otherwise [=>] alternate]
end [case]

Arguments: test expressionbnf

consequent [constituentsbnf] ;

alternate [constituentsbnf] ;

Values: Zero or more instances of <object>.

C H A P T E R 1 4

The Built-In Macros and Special Operators

386 Statements

Description: case executes the test in order, until it reaches a test which returns true. When
it reaches a test which returns true, it executes the corresponding consequent
and returns its values. Subsequent tests are not executed. If the corresponding
consequent is empty, the first value of the successful test is returned.

As a special case, the name otherwise may appear as a test. This test always
succeeds if there is no preceding successful test.

If no test is true, then case returns #f.

case

 player1.money <= 0

 => end-game(player1);

 player2.money <= 0

 => end-game(player2);

 otherwise

 => move(player1);

 move(player2);

end case;

select [Statement] 14

Compares a target object to a series of potential matches, and executes an
implicit body associated with the first match found.

Macro Call: select (target [by test])
 { matches => consequent }*
 [otherwise [=>] alternate]
end [select]

Arguments: target expressionbnf

test expressionbnf

matches { expressionbnf } ,
+ | ({ expressionbnf } ,

+)

consequent [constituentsbnf] ;

alternate [constituentsbnf] ;

Values: Zero or more instances of <object>.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 387

Description: select generates a target object and then compares it to a series of potential
matches, in order. If it finds a match, it executes the corresponding consequent
and returns the values of the consequent. If no match is found, an error is
signaled.

The target is executed to produce the match object.

The test, if supplied, is a function used to compare the target object to the
potential matches. The default test is ==.

One at a time, each match is executed and its value compared to target, in order.
If a match is found, the corresponding consequent is executed and its values are
returned. If the corresponding consequent is empty, #f is returned.

Once a match is found, subsequent matches and the corresponding bodies are
not executed.

As a special case, the name otherwise may appear instead of a matches. This
will be considered a match if no other match is found.

If there is no matching clause, an error is signaled. Because an otherwise
clause matches when no other clause matches, a select form that includes an
otherwise clause will never signal an error for failure to match.

Since testing stops when the first match is found, it is irrelevant whether the
test function would also have returned true if called on later matches of the
same clause or on matches of later clauses.

select (career-choice(student))

 art:, music:, drama:

 => "Don’t quit your day job";

 literature:, history:, linguistics:

 => "That really is fascinating";

 science:, math:, engineering:

 => "Say, can you fix my VCR?";

 otherwise => "I wish you luck";

end select;

select (my-object by instance?)

 <window>, <view>, <rectangle> => "a graphical object";

 <number>, <string>, <list> => "a computational object";

 otherwise => "I don’t know";

end select

C H A P T E R 1 4

The Built-In Macros and Special Operators

388 Statements

Iteration Constructs 14

while [Statement] 14

Repeatedly executes a body until a test expression is false.

Macro Call: while (test)
 [body]
end [while]
⇒ #f

Arguments: test expressionbnf

body bodybnf

Values: #f

Description: while loops over body until test returns false.

Each pass through the loop begins by executing test. If test returns a true value,
the expressions in the body are executed and the looping continues. If test
returns false, the loop terminates and while returns #f.

until (test) [Statement] 14

Repeatedly executes a body until a test expression is true.

Macro Call: until (test)
 [body]
end [until]
⇒ #f

Arguments: test expressionbnf

body bodybnf

Values: #f

Description: until loops over body until test returns true.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 389

Each pass through the loop begins by executing test. If test returns false, the
expressions in the body are executed and the looping continues. If test returns
true, the loop terminates and until returns #f.

for [Statement] 14

Performs general iteration over a body, updating bindings and performing end
tests on each iteration.

Macro Call: for ({ for-clause } ,* |
 { { for-clause ,}* end-clause })
 [loop-body]
 [finally [result-body]]
end [for]

Arguments: for-clause explicit-step-clause |

collection-clause |

numeric-clause

end-test expressionbnf

loop-body bodybnf

result-body bodybnf

explicit-step-clause
variablebnf = init-value then next-value

collection-clause
variablebnf in collection

numeric-clause
variablebnf from start
 [{ to | above |below } bound]
 [by increment]

end-clause { until: | while: } end-test

init-value expressionbnf

next-value expressionbnf

collection expressionbnf

start expressionbnf

bound expressionbnf

C H A P T E R 1 4

The Built-In Macros and Special Operators

390 Statements

increment expressionbnf

Values: Zero or more instances of <object>.

Description: for iterates over loop-body, creating and updating iteration bindings on each
iteration according to the for-clauses. Iteration ends when one of the for-clauses
is exhausted, or when the optional end-test is satisfied.

Each for-clause controls one iteration binding. The optional end-test does not
control any iteration bindings.

There are three kinds of for-clauses: explicit-step-clauses, collection-clauses, and
numeric-clauses: An explicit-step-clause creates bindings for the results of
executing an expression. A collection-clause creates bindings for successive
elements of a collection. A numeric-clause creates bindings for a series of
numbers.

Execution of a for statement proceeds through the following steps:

1. Execute the expressions that are executed just once, in left to right order as
they appear in the for statement. These expressions include the types of all
the bindings, and the expressions init-value, collection, start, bound, and
increment. If the value of collection is not a collection, an error is signaled.
The default value for increment is 1.

2. Create the iteration bindings of explicit step and numeric clauses.

n For each explicit step clause, create the binding for the value of init-value.
If the binding is typed and the value is not of the specified type, signal an
error.

n For each numeric clause, create the binding for the value of start. If the
binding is typed and the value is not of the specified type, signal an error.

3. Check numeric and collection clauses for exhaustion. If a clause is
exhausted, go to step 9.

n A collection clause is exhausted if its collection has no next element.

n A numeric clause is exhausted if a bound is supplied and the value of the
clause is no longer in bounds. If above is specified, the clause will be in
bounds as long as the value is greater than the bounds. If below is
specified, the clause will be in bounds as long as the value is less than the
bounds. If to is specified with a positive or zero increment, the clause will
be in bounds as long as it is less than or equal to the bounds. If to is

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 391

specified with a negative increment, the clause will be in bounds as long as
it is greater than or equal to the bounds.

4. For each collection clause create the iteration binding for the next element of
the collection for that clause. Fresh bindings are created each time through
the loop (i.e., the binding is not assigned the new value). If the binding is
typed and the value is not of the specified type, signal an error.

5. If end-test is supplied, execute it. If the value of end-test is false and the
symbol is while:, go to step 9. If the value of end-test is true and the
symbol is until:, go to step 9.

6. Execute the expressions in the body in order. The expressions in the body are
used to produce side-effects.

7. Obtain the next values for explicit step and numeric clauses. Values are
obtained in left to right order, in the environment produced by step 6.

n For each explicit step clause, execute next-value.

n For each numeric clause, add the increment to the current value of the
binding, using +.

8. Create the iteration bindings of explicit step and numeric clauses for the
values obtained in step 7. For each clause, if a binding type is supplied and
the next value for that clause is not of the specified type, signal an error.
Fresh bindings are created each time through the loop (i.e., the binding is not
assigned the new value). After the bindings have been created, go to step 3.

9. Execute the expressions in the result-body in order. Bindings created in step
2 and 8 are visible during the execution of result-body, but bindings created
in step 4 (the iteration bindings of collection clauses) are not visible during
the execution of result-body. The values of the last expression in the
result-body are returned as the values of the for statement. If there are no
expressions in the result-body, for returns #f.

for (thing = first-thing then next(thing),

 until: done?(thing))

 do-some(thing)

end;

for (j :: <integer> from 0 to height)

 for (i :: <integer> from 0 to width)

 erase(i,j);

C H A P T E R 1 4

The Built-In Macros and Special Operators

392 Statements

 plot (i,j);

 end for;

end for;

for (city in olympic-cities,

 year from start-year by 4)

 schedule-olympic-game(city, year)

 finally: notify(press);

 sell(tickets);

end;

for (i from 0 below 100,

 zombies from 0 below 100,

 normals from 100 above 0 by -1)

 population[i] := zombies + normals

end;

begin [Statement] 14

Executes expressions in a body, in order.

Macro Call: begin [body] end

Arguments: body bodybnf

Values: Zero or more instances of <object>.

Description: Begin executes the expressions in a body, in order. The values of the last
expression are returned. If there are no expressions in the body, #f is returned.

block [Statement] 14

Executes a body with several options for non-standard flow of control.

Macro Call: block ([exit-variable])
 [block-body]
 [afterwards [afterwards-clause]]

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 393

 [cleanup [cleanup-clause]]
 { exception exception-clause }*
end [block]

Arguments: exit-variable variable-namebnf

block-body bodybnf

afterwards-clause
bodybnf

cleanup-clause bodybnf

exception-clause
([name ::] type { ,exception-options }*)
 [bodybnf]

name variable-namebnf

type expressionbnf

exception-options
{ test: expressionbnf } | { init-arguments: expressionbnf }

Values: Zero or more instances of <object>.

Description: block executes the expressions in the block-body in order, and then the executes
the optional afterwards-clause and cleanup-clause. Unless there is a non-local exit,
block returns the values of the block-body, or #f if there is no block-body.

If exit-variable is provided, it is bound to an exit procedure (an object of type
<function>) which is valid during the execution of the block body and the
clauses. At any point in time before the last clause returns, the exit procedure
can be called. Calling the exit procedure has the effect of immediately
terminating the execution of the block, and returning as values the arguments
to the exit procedure.

The body of the afterwards-clause, if provided, is executed after the block-body.
The values produced by the afterwards-clause are ignored.

The body of the cleanup-clause, if provided, is executed after the block-body and
afterwards-clause. Its values are also ignored. The cleanup clause differs from
the afterwards clause in that its body is guaranteed to be executed, even if the
execution of the block is interrupted by a non-local exit. There is no such
guarantee for the afterwards clauses.

C H A P T E R 1 4

The Built-In Macros and Special Operators

394 Statements

For example, the following code fragment ensures that files are closed even in
the case of an error causing a non-local exit from the block body:

block (return)

 open-files();

 if (something-wrong)

 return("didn't work");

 end if;

 compute-with-files()

cleanup

 close-files();

end block

The exception-clauses, if supplied, install exception handlers during the
execution of the block-body, afterwards-clause, and cleanup-clause. If one of these
handlers is invoked, it never declines but immediately takes a non-local exit to
the beginning of the block, executes the expressions in its body and returns the
values of the last expression or #f if the body is empty. Note that when the
expressions in an exception body are executed, all handlers established by the
block are no longer active. Note also that the cleanup clause of the block will
be executed before the expressions of the handler body are executed.

The type and exception-options are as for let handler. If present, name is
bound to the condition during the execution of the handler’s body.

The exception clauses are checked in the order in which they appear. That is,
the first handler will take precedence over the second, the second over the
third, etc.

The following is a trivial use of an exception clause.

block (return)

 open-files();

 compute-with-files()

exception (<error>)

 "didn't work")

cleanup

 close-files();

end block

C H A P T E R 1 4

The Built-In Macros and Special Operators

Statements 395

Dynamic Extent of Block Features 14

A block installs features which are active for different portions of the execution
of the block.

■ During the execution of the block body and the afterwards clause the exit
procedure, exception clauses, and cleanup clauses are active.

■ During the execution of the cleanup clause, the exit procedure and exception
clauses are active.

■ During the execution of a handler installed by an exception clause, the exit
procedure is active.

Intervening Cleanup Clauses 14

When an exit procedure is called, it initiates a non-local exit out of its
establishing block. Before the non-local exit can complete, however, the
cleanup clauses of intervening blocks (blocks that have been entered, but not
exited, since the establishing block was entered) must be executed, beginning
with the most recently entered intervening block. Once the cleanup clauses of
an intervening block have been executed, it is an error to invoke the exit
procedure established by that block. The cleanup clauses of the establishing
block are executed last. At that point, further invocation of the exit procedure
becomes invalid, and the establishing block returns with the values that were
passed to the exit procedure.

Note that a block statement may also be exited due to the execution of a
handler clause. Before the exception clause is executed, intervening cleanup
clauses are executed as described above (including any clause for the
establishing block.) The exit procedure may be invoked during execution of
exception clauses, in which case the argument values are immediately returned
from the block (the cleanup clause already having been executed).

During the process of executing the cleanup clauses of the intervening blocks,
any valid exit procedure may be invoked and may interrupt the current
non-local exit.

All exception clauses are executed in the same dynamic environment. None of
the handlers established in the block are visible during the execution of one of
the handlers. This can be thought of as parallel installation of the handlers.

C H A P T E R 1 4

The Built-In Macros and Special Operators

396 Statements

Restrictions on the use of exit procedures 14

The exit procedure is a first-class object. Specifically, it can be passed as an
argument to functions, stored in data structures, etc. Its use is not restricted to
the lexical body of the block in which it was established. However, invocation
of the exit procedure is valid only during the execution of the establishing
block. It is an error to invoke an exit procedure after its establishing block has
returned, or after execution of the establishing block has been terminated by a
non-local exit.

In the following example, the block establishes an exit procedure in the
binding bar. The block returns a method containing a call to bar, and the
method is stored in the binding foo. Calling foo is an error because it is no
longer valid to invoke bar after its establishing block has returned.

define constant foo =

 block (bar)

 method (n) bar(n) end;

 end block;

foo(5)

 {error or other undefined consequences}

method [Statement] 14

Creates and returns a method.

Macro Call: method parameter-list [body] end [method]

Arguments: parameter-list parameter-listbnf

body bodybnf

Values: An instance of <method>.

Description: method creates and returns a method specified by the parameter-list and body.
For a complete description of methods, see “Methods” on page 78.

C H A P T E R 1 4

The Built-In Macros and Special Operators

Special Operators 397

Special Operators 14

Special operators provide syntax for assignment and for conditional execution.

Assignment 14

 := [Special Operator] 14

Stores a new value in a location.

Operator Call: place := new-value

Arguments: place operandbnf

new-value operandbnf

Values: new-value, an instance of <object>.

Description: := stores new-value in place and returns new-value.

place may be a variable, a getter function or macro with a corresponding setter,
a slot access, or an element reference.

new-value may be any operand. It is executed, and its value is stored in place.

Table 14-4 Special Operators

Operator Description Page

:= Stores a new value in a location. 397

| Returns the value of the first of two
operands which is true.Returns the value
of the first of two operands which is true.

399

& Executes a second operand and returns its
values if the value of the first operand is
true.

400

C H A P T E R 1 4

The Built-In Macros and Special Operators

398 Special Operators

In all cases, new-value must be an appropriate type for place or an error is
signaled.

The new-value of an assignment statement is executed first, followed by the
place (assuming the place requires any execution, which will only be true if it is
not a binding name).

Assignment to a binding 14

If place is a binding name, then new-value is stored in the binding. It is an error
if there is no binding corresponding to place. (:= cannot be used to create
bindings, only to change their values.) An error is also signaled if place is a
binding specialized to a type and the new-value is not of that type.

define variable *number* = 10;

number

 ⇒ 10

number := *number* + 10;

 ⇒ 20

number

 ⇒ 20

Assignment to a function or function macro 14

If place has the syntax of a function call, then := will invoke the corresponding
setter function. Given a binding named fun, the corresponding setter is the
binding named fun-setter in the current environment.

:= maps place to place-setter without regard for whether place is a function
or a macro. It does not expand a macro call on the left-hand side before
determining the setter.

With the exception of the order of execution and a guaranteed return value, the
following three expressions are equivalent:

top-view.subviews := generate-subviews()

subviews(*top-view*) := generate-subviews()

subviews-setter(generate-subviews(), *top-view*)

(The differences are as follows: the execution time of subviews-setter is
undefined in the first two expressions but defined in the last; the first two

C H A P T E R 1 4

The Built-In Macros and Special Operators

Special Operators 399

expressions will return the value of the call to generate-subviews while the
last will return the value of the call to subviews-setter.)

name(arg1,…argn) := new-value

behaves exactly the same as

begin

 let temp = new-value;
 name-setter(temp, arg1,…argn);

 temp
end

This is true regardless of whether name and name-setter are functions or
macros. Here temp stands for a variable with a unique name. If name-setter
is a macro, it is responsible for the order of executation of arg1,…argn.

The same considerations apply to arg.name := new-value.

Assignment to element references 14

Just as [] can be used as syntax for element and aref, [] and := can be used
as syntax for element-setter and aref-setter. For example, the
following three expressions are equivalent:

foo[2] := "quux"

element (foo, 2) := "quux"

element-setter ("quux", foo, 2).

Conditional Execution 14

| [Special Operator] 14

Returns the value of the first of two operands which is true.

Macro Call: one | another

Arguments: one operandbnf

another operandbnf

C H A P T E R 1 4

The Built-In Macros and Special Operators

400 Special Operators

Values: Zero or more instances of <object>.

Description: | (logical or) executes one. If the first value of one is true, that value is
returned. Otherwise another is executed and its values are returned.

& [Special Operator] 14

Executes a second operand and returns its values if the value of the first
operand is true.

Macro Call: one & another ⇒ values

Arguments: one operandbnf

another operandbnf

Values: Zero or more instances of <object>.

Description: & (logical and) executes one. If the first value returned by one is false, #f is
returned and another is not executed. Otherwise, another is executed and its
values are returned.

401

A P P E N D I X A

BNF A

General Notes A

Dylan syntax can be parsed with an LALR(1) grammar.

This appendix uses some special notation to make the presentation of the
grammar more readable.

■

The

opt

 suffix means that the preceding item is optional.

■

A trailing ellipsis (...) is used in two different ways to signal possible
repetition.

n

If there is only one item on the line preceding the ellipsis, the item may
appear one or more times.

n

If more than one item precedes the ellipsis, the last of these items is
designated a separator; the rest may appear one or more times, with the
separator appearing after each occurrence but the last. (When only one
item appears, the separator does not appear.)

■

Identifiers for grammar rules are written with uppercase letters when the
identifier is used in the phrase grammar but defined in the lexical grammar.

■

The grammar does not use distinct identifiers for grammar rules that differ
only in alphabetic case.

Lexical Notes A

In the lexical grammar, the various elements that come together to form a
single token on the right-hand sides of rules must

not

 be separated by
white-space, so that the end result will be a single token. This is in contrast to
the phrase grammar, where each element is already a complete token or a
series of complete tokens.

Arbitrary white-space is permitted between tokens, but it is required only as
necessary to separate tokens that might otherwise blend together.

Figure A-0
Listing A-0
Table A-0

This document was created with FrameMaker 4.0.4

A P P E N D I X A

BNF

402

Lexical Grammar

Case is not significant except within character and string literals. The
grammars do not reflect this, using one case or the other, but it is still true.

Lexical Grammar A

Comments A

comment:

//

 …

the rest of the line

/*

 …

everything even across lines

…

*/

Tokens A

TOKEN

:

NAME
SYMBOL
NUMBER
CHARACTER

-

LITERAL
STRING
UNARY

-

OPERATOR
BINARY

-

OPERATOR

punctuation
#-word

punctuation:

one of

() , . ; [] { } :: - = == =>

one of

#(#[## ? ?? ?= ...

#-word:

one of

#t #f #next #rest #key #all-keys #include

Reserved Words A

reserved-word:
core-word

A P P E N D I X A

BNF

Lexical Grammar

403

BEGIN

-

WORD
FUNCTION

-

WORD
DEFINE

-

BODY

-

WORD
DEFINE

-

LIST

-

WORD

core-word:

one of

define end handler let local macro otherwise

The following reserved words are exported by the Dylan module:

BEGIN

-

WORD

:

one of

begin block case for if method

one of

select unless until while

FUNCTION

-

WORD

:
(none)

DEFINE

-

BODY

-

WORD

:

one of

class library method module

DEFINE

-

LIST

-

WORD

:

one of

constant variable

Names, Symbols and Keywords A

NAME

:

word

\

 word

operator-name

UNRESERVED

-

NAME

:

any

word

that is not also a

reserved-word

\

 word

operator-name

ORDINARY

-

NAME

:

UNRESERVED

-

NAME
DEFINE

-

BODY

-

WORD
DEFINE

-

LIST

-

WORD

CONSTRAINED

-

NAME

:

NAME

 :

word

NAME

 :

BINARY

-

OPERATOR

:

word

A P P E N D I X A

BNF

404

Lexical Grammar

operator-name:

\

 unary-function-operator

\

 binary-function-operator

SYMBOL

:

word

:

#

STRING

word:
leading-alphabetic
leading-numeric alphabetic-character leading-alphabetic
leading-graphic leading-alphabetic

leading-alphabetic:
alphabetic-character
leading-alphabetic any-character

leading-numeric:
numeric-character
leading-numeric any-character

leading-graphic:
graphic-character
leading-graphic any-character

any-character:
alphabetic-character
numeric-character
graphic-character
special-character

alphabetic-character:

one of

a b c d e f g h i j k l m n o p q r s t u v w x y z

numeric-character:

one of

0 1 2 3 4 5 6 7 8 9

graphic-character:

one of

! & * < > | ^ $ % @ _

special-character:

one of

- + ~ ? / =

A P P E N D I X A

BNF

Lexical Grammar

405

Operators A

UNARY

-

OPERATOR

:

unary-function-operator

BINARY

-

OPERATOR

:
binary-function-operator
special-operator

unary-function-operator:
one of - ~

binary-function-operator:
one of + - * / ^ = == ~= ~== < <= > >=

special-operator:
one of & | :=

Character and String Literals A

CHARACTER-LITERAL:
' character '

character:
any printing character (including space) except for ' or \
\ escape-character
\ '

STRING:
" more-string

more-string:
string-character more-string
"

string-character:
any printing character (including space) except for " or \
\ escape-character
\ "

escape-character:
one of \ a b e f n r t 0
< hex-digits >

A P P E N D I X A

BNF

406 Lexical Grammar

Numbers A

NUMBER:
integer
ratio
floating-point

integer:
binary-integer
octal-integer
signopt decimal-integer
hex-integer

binary-integer:
#b binary-digit
binary-integer binary-digit

octal-integer:
#o octal-digit
octal-integer octal-digit

decimal-integer:
decimal-digit
decimal-integer decimal-digit

hex-integer:
#x hex-digit
hex-integer hex-digit

hex-digits:
hex-digit …

binary-digit:
one of 0 1

octal-digit:
one of 0 1 2 3 4 5 6 7

decimal-digit:
one of 0 1 2 3 4 5 6 7 8 9

hex-digit:
one of 0 1 2 3 4 5 6 7 8 9 A B C D E F

A P P E N D I X A

BNF

Phrase Grammar 407

ratio:
signopt decimal-integer / decimal-integer

floating-point:
signopt decimal-integeropt . decimal-integer exponentopt
signopt decimal-integer . decimal-integeropt exponentopt
signopt decimal-integer exponent

exponent:
E signopt decimal-integer

sign:
one of + -

Phrase Grammar A

Program Structure A

source-record:
bodyopt

body:
constituents ;opt

constituents:
constituent ; …

constituent:
definition
local-declaration
expression

macro:
definition-macro-call
statement
function-macro-call

A P P E N D I X A

BNF

408 Phrase Grammar

Property Lists A

comma-property-list:
, property-list

property-list:
property , …

property:
SYMBOL value

value:
basic-fragment

Fragments A

body-fragment:
non-statement-body-fragment
statement non-statement-body-fragmentopt

list-fragment:
non-statement-list-fragment
statement non-statement-list-fragmentopt

basic-fragment:
non-statement-basic-fragment
statement non-statement-basic-fragmentopt

non-statement-body-fragment:
definition semicolon-fragmentopt
local-declaration semicolon-fragmentopt
simple-fragment body-fragmentopt
, body-fragmentopt
; body-fragmentopt

semicolon-fragment:
; body-fragmentopt

non-statement-list-fragment:
simple-fragment list-fragmentopt
, list-fragmentopt

A P P E N D I X A

BNF

Phrase Grammar 409

non-statement-basic-fragment:
simple-fragment basic-fragmentopt

simple-fragment:
variable-name
constant-fragment
BINARY-OPERATOR
UNARY-OPERATOR
bracketed-fragment
function-macro-call
#-word
one of . :: => ? ?? ?= ... ## otherwise

bracketed-fragment:
(body-fragmentopt)
[body-fragmentopt]
{ body-fragmentopt }

constant-fragment:
NUMBER
CHARACTER-LITERAL
STRING
SYMBOL
#(constants . constant)
#(constantsopt)
#[constantsopt]

Definitions A

definition:
definition-macro-call
define macro macro-definition

definition-macro-call:
define modifiersopt DEFINE-BODY-WORD body-fragmentopt definition-tail
define modifiersopt DEFINE-LIST-WORD list-fragmentopt

modifier:
UNRESERVED-NAME

modifiers:
modifier …

A P P E N D I X A

BNF

410 Phrase Grammar

definition-tail:
end DEFINE-BODY-WORDopt NAMEopt

Local Declarations A

local-declaration:
let bindings
let handler condition = handler
local local-methods

condition:
type
(type comma-property-listopt)

handler:
expression

local-methods:
methodopt method-definition , …

bindings:
variable = expression
(variable-list) = expression

variable-list:
variables
variables , #rest variable-name
#rest variable-name

variables:
variable , …

variable:
variable-name
variable-name :: type

variable-name:
ORDINARY-NAME

type:
operand

A P P E N D I X A

BNF

Phrase Grammar 411

Expressions A

expressions:
expression , …

expression:
binary-operand BINARY-OPERATOR …

binary-operand:
SYMBOL
UNARY-OPERATORopt operand

operand:
operand (argumentsopt)
operand [arguments]
operand . variable-name
function-macro-call
leaf

arguments:
SYMBOLopt expression , …

function-macro-call:
FUNCTION-WORD (body-fragmentopt)
FUNCTION-WORD (body-fragmentopt) := expression

leaf:
literal
variable-name
(expression)
statement

literal:
NUMBER
CHARACTER-LITERAL
string-literal
#t
#f
#(constants . constant)
#(constantsopt)
#[constantsopt]

string-literal:
STRING …

A P P E N D I X A

BNF

412 Phrase Grammar

constants:
constant , …

constant:
literal
SYMBOL

Statements A

statement:
BEGIN-WORD body-fragmentopt end-clause

end-clause:
end BEGIN-WORDopt

case-body:
cases ;opt

cases:
case-label constituentsopt ; …

case-label:
expressions =>
(expressions) =>
otherwise =>opt

Methods A

method-definition:
variable-name parameter-list bodyopt end methodopt variable-nameopt

parameter-list :
(parametersopt) ;opt
(parametersopt) => variable ;
(parametersopt) => (values-listopt) ;opt

parameters:
required-parameters
required-parameters , next-rest-key-parameter-list
next-rest-key-parameter-list

A P P E N D I X A

BNF

Phrase Grammar 413

next-rest-key-parameter-list:
#next variable-name
#next variable-name , rest-key-parameter-list
rest-key-parameter-list

rest-key-parameter-list:
#rest variable-name
#rest variable-name , key-parameter-list
key-parameter-list

key-parameter-list:
#key keyword-parametersopt
#key keyword-parametersopt , #all-keys
#all-keys

required-parameters:
required-parameter , …

required-parameter:
variable
variable-name == expression

keyword-parameters:
keyword-parameter , …

keyword-parameter:
SYMBOLopt variable defaultopt

default:
= expression

values-list:
variables
variables , #rest variable
#rest variable

Macro Definitions A

macro-definition:
NAME main-rule-set auxiliary-rule-setsopt end macroopt NAMEopt

main-rule-set:
body-style-definition-rule ...
list-style-definition-rule ...

A P P E N D I X A

BNF

414 Phrase Grammar

statement-rule ...
function-rule ...

body-style-definition-rule :
{ define definition-headopt NAME patternopt ;opt end } => rhs

list-style-definition-rule :
{ define definition-headopt NAME patternopt } => rhs

rhs:
{ templateopt } ;opt

definition-head :
modifier-pattern ...

modifier-pattern:
modifier
pattern-variable

statement-rule:
{ NAME patternopt ;opt end } => rhs

function-rule:
{ NAME (patternopt) } => rhs

Patterns A

pattern:
pattern-list ; ...

pattern-list:
pattern-sequence
property-list-pattern
pattern-sequence , pattern-list

pattern-sequence:
simple-pattern ...

simple-pattern:
NAME
=>
bracketed-pattern
binding-pattern
pattern-variable

A P P E N D I X A

BNF

Phrase Grammar 415

bracketed-pattern:
(patternopt)
[patternopt]
{ patternopt }

binding-pattern:
pattern-variable :: pattern-variable
pattern-variable = pattern-variable
pattern-variable :: pattern-variable = pattern-variable

pattern-variable:
? NAME
? CONSTRAINED-NAME
...

property-list-pattern:
#rest pattern-variable
#key pattern-keywordsopt
#rest pattern-variable , #key pattern-keywordsopt

pattern-keywords:
#all-keys
pattern-keyword
pattern-keyword , pattern-keywords

pattern-keyword:
? NAME defaultopt
? CONSTRAINED-NAME defaultopt
?? NAME defaultopt
?? CONSTRAINED-NAME defaultopt

Templates A

template:
template-element ...

template-element:
NAME
SYMBOL
NUMBER
CHARACTER-LITERAL
STRING
UNARY-OPERATOR

A P P E N D I X A

BNF

416 Phrase Grammar

separator
#-word
one of . :: =>
(templateopt)
[templateopt]
{ templateopt }
#(templateopt)
#[templateopt]
substitution

separator:
one of ; ,
BINARY-OPERATOR

substitution:
name-prefixopt ? name-string-or-symbol name-suffixopt
?? NAME separatoropt ...
...
?= NAME

name-prefix:
STRING ##

name-suffix:
STRING

name-string-or-symbol:
NAME
STRING
SYMBOL

Auxiliary Rule Sets A

auxiliary-rule-sets:
auxiliary-rule-set ...

auxiliary-rule-set:
SYMBOL auxiliary-rules

auxiliary-rules:
auxiliary-rule ...

auxiliary-rule:
{ patternopt } => rhs

A P P E N D I X A

BNF

Phrase Grammar 417

A P P E N D I X A

BNF

418 Phrase Grammar

419

Glossary

abstract class

A class that is not intended to have

direct
instances

. The opposite of an abstract class
is a

concrete class

.

access

1. (a slot) To retrieve (

get

) or replace (

set

)
the value of the slot. 2. (a collection
element) To retrieve or replace the collection
element.

accessor

A

slot accessor

 (a

getter

 or

setter

).

accessible

(from a module) A binding that is either

owned

 by the module or imported into the
module from another module.

ambiguous methods

(for a particular function call) Two
methods that are both

applicable

 for the
function call, but neither of which is more
specific than the other.

anonymous

1. (~ method) Created by a

method

statement, as opposed to having been
created and named by a

define method

or

local

 definition, or having been

implicitly defined

. Compare with

bare
method

. 2. (~ class) Created by calling the

make

 function on the class

<class>

, as
opposed to having been created and named
by a

define class

 definition. 3. (~
generic function) Created by calling the

make

 function on the class

<generic-function>

, as opposed to
having been created and named by a

define generic

 definition.

applicable

1. (~ method, during a generic function call)
Having a

parameter list

 which matches the
supplied arguments. 2. (~ handler, when a
condition is signaled) Matching the
signaled condition by type and by an
optional test function associated with the
handler.

apply

1. (a function to arguments) To call the
function with the arguments. 2. The
function

apply

 (see page 339).

argument

An object that is supplied to a function in a
function call. In other languages, this is
sometimes called an “actual argument” or
“actual parameter.”

array

An instance of <array>.

assign

1. (a variable) To change the value of the
variable. 2. (a slot) To set the value of the
slot. 3. (a collection element) To change the
value of a collection element.

bare method

1. A method which is not part of a generic
function. 2. A method which is used
directly, as though it is not part of a generic
function.

This document was created with FrameMaker 4.0.4

G L O S S A R Y

420

base type

(of a type): Every type has a base type. The
base type for a class is the class itself. The
base type of a singleton is the singleton
itself. The base type of a union is the union
of the base types of its component types.
The base type of a limited type

limited(

C

,

 …

)

 is

C

.

bind

(a variable) To establish a

binding

.

binding

An association between a name and a value.

body

A grammatical element of a Dylan
program, consisting of zero or more
constituents. If any of the constituents are
expressions, the body returns the values of
the last expression.

bound

(~ name) Having a

binding

 which
associates the namewith a value.

call

(a function) To invoke a function on a set of
arguments. If the function is a generic
function, it will dispatch to an appropriate
method. If the function is a method, it will
cause the body of the method to be
executed within an environment in which
the

parameter

s

 of the function are bound to
the

arguments

.

circular list

A list that has no last element, because the
tail of every pair in the list is another pair in
the list. Compare with

improper list

,

dotted list

.

class

1. A

type

 that specifies the structure of

instance

 and categorizes objects. Each
Dylan object is a

direct instance

 of exactly
one class. 2. (of an object) The class of
which the object is a

direct instance

.

class hierarchy

A directed acyclic graph (DAG) which
describes the subclass/superclass
relationships among classes. Each node
represents a class, the children of a node
represent the direct subclasses of a class,
and the parents of a node represent the
direct superclasses of a class.

class precedence list

(of a class) A total ordering on the class and
its superclasses that is consistent with the
local precedence orders for the class and
each of its superclasses. The class
precedence list is used in determining
method specificity.

cleanup clause

A clause in a

block

 statement that is
guaranteed to be executed, even if the
execution of the

block

 statement is
terminated by a

non-local exit

.

coerce

(an object to a type) To produce a new
object of the specified type, without
modifying the original object. The intent is
to produce an object that preserves the
meaning of the original object, but is an
instance of the specified type.

collection

An aggregate data structure such as a list, a
table, or an array. A collection is an
instance of

<collection>.

G L O S S A R Y

421

collection alignment

A technique of preparing two or more
collections for an iteration over those
collections, ensuring that elements are
paired in a consistent way.

collection key

(of a collection) An object that can be passed
to random-access operations (such as

element

 or

element-setter

) to access
an element of the collection.

concrete class

A class that is intended to have direct
instances. The opposite of a concrete class
is an

abstract class

.

condition

An object that is signaled in an exceptional
situation, and used to determine which

handlers

 are applicable in the situation.
Conditions are instances of

<condition>

.

congruent

(two or more ~ parameter lists) Having
compatible parameters. The parameter lists
of a generic function and its methods must
be congruent. See “Parameter List
Congruency” on page 91.

constant

1. A

constant binding

. 2. A

literal
constant

. 3. (~ binding) Read-only. 4. (~
slot) Not assignable. Constant slots do not
have setter functions.

constant binding

A binding which cannot be assigned a new
value.

contents

1. (of a collection) The elements of the
collection. 2. (of an object) The values
stored in the object’s slots.

copy

1. (of an object) A new object that has
similar structure and

contents

 as the
original object. A copy may be an instance
of the same class as the original object, or it
may be an instance of the

type-for-copy

 of
the object. A copy may or may not share
structure with the original object. Compare

fresh copy

,

shallow copy

. 2. (an object) To
create a copy of the object.

default method

(of a generic function) The method with the
most general parameter specializers for the
generic function, intended for use when no
more specific method is defined.

definition

A syntax form that denotes a declarative
part of a program. Definitions are restricted
to be top level expressions, and do not
return values.

destructive

(~ function) Capable of modifying its
arguments.

direct instance

(of a class C) An object whose class is C
itself, rather than some subclass of C.

direct subclass

(of a class C1) A class C2 such that C1 is a
direct superclass of C2.

direct superclass

(of a class C1) A class C2 that is listed as a
superclass of C1 in the definition of C1, or
that was passed as one of the

superclass:

 arguments to

make

 when C1
was created.

G L O S S A R Y

422

disjoint

(of types): Informally, two types are disjoint
if there can be no object that is an instance
of both types. A formal definition is given
in “Type Disjointness” on page 49.

dotted list

A list that has something other than the

empty list

 as the tail of its last pair.
Compare

proper list

,

improper list

.

Dylan source code file
A file containing Dylan code in the
standard portable file format as described
in“Dylan Interchange Format” on page 21.

element
(of a collection) An object that is stored in
the collection. It can be identified by a
collection key.

element reference syntax
The shorthand syntax for accessing an
element of an array or of any other
collection. x[y], x[y, z]

empty list
The list that contains no elements. It is the
unique instance of the class <empty-list>.

environment
1. A set of bindings. 2. The set of bindings
that are available to a particular part of a
program.

equivalence class
(for an equivalence predicate) A set of
objects, or potential objects, that are all the
same under the specified equivalence
predicate and different under that predicate
from all objects not in the equivalence class.

equivalence predicate
A boolean function of two arguments that
returns true if and only if the arguments are
"the same" according to some specified
criteria. For a function to be used as an
equivalence predicate, it must be reflexive,
commutative, and transitive. See also hash
function.

equivalent types
Two types, each of which is a subtype of the
other.

error
1. A condition which represents an error
situation. 2. An error situation.

error situation
A situation in which there is something
invalid about the program, in contrast to an
environmental condition such as running
out of memory or battery power, or
inability to establish a network connection.

exceptional situation
A situation that is not conceptually part of
the normal execution of the program, but
must be handled some other way.
Exceptional situations are represented by
conditions.

exit procedure
A function that can be called explicitly,
during the execution of a block statement,
to terminate the execution of the block
statement, transfer control to its associated
exit point, and return zero or more values.

exit point
A point through which control may be
transferred. An exit point established by a
block statement may have an associated
exit procedure.

G L O S S A R Y

423

explicit definition
A definition created by define
constant, define variable, define
generic, define macro and the class
name in define class. See also implicit
definition.

explicitly defined
(of a class or generic function) defined by
an explicit definition.

explicitly known
1. (of a class in a library) a class defined by
define class in the library or in one of
the libraries it uses. 2. (of a generic function
in a library) a generic function explicitly
defined by define generic in the library
or in one of the libraries it uses, or a generic
function implicitly defined by the definition
of a method explicitly known in the library
or by a slot specification for a class
explicitly known in the library. 3. (of a
method in a library) a method defined by
define method in the library or in one of
the libraries it uses, or defined by a slot
specification for a class explicitly known in
the library.

exported binding
(from a module) A binding that is explicitly
exported from the module. Exported
bindings are available to be imported by
other modules that use the module.
Unexported bindings are not available to
other modules.

expression
A section of program code that represents a
value, or the computation of a value. An
expression may be part of a larger
expression, and it may itself have
subexpressions.

false
The unique false object, #f.

first-class object
An object. The adjective “first-class” is
used to emphasize that the object may be
stored in a variable or data structure, may
be passed as an argument to a function, and
may be returned as the value of a function.

free class
A class that may be used freely in multiple
inheritance. The opposite of a free class is a
primary class.

fresh
A collection C is fresh if modification of any
pre-existing collection's contents can never
modify the contents of C and if
modifications to C can never modify the
contents of any pre-existing collection.
Immutable collections cannot be modified,
so a fresh immutable collection can share
structure with other immutable collections.

fresh copy
A copy that does not share structure.
Compare with shallow copy.

freshly allocated
See fresh.

function
An object used for performing actions and
returning values. Functions have a
parameter list and an optional return value
specification, which together define the
function’s signature. There are two kinds
of functions: methods and generic
functions. A method has a body of code
which is executed to compute the method’s
values when the method is called. A
generic function consists of a setof methods,

G L O S S A R Y

424

and computes its values by selecting and
calling an appropriate method based on the
types of the arguments.

general instance
(of a type) An object that is either a direct
instance or indirect instance of the type.

general superclass
(of a class) A class that is either a direct
superclass or indirect superclass of the
class.

generic function
A function consisting of a family of
methods with a common calling protocol.
A generic function computes its value by
selecting and calling an appropriate method
based on the types of the arguments. See
also method dispatch.

generic function dispatch
See method dispatch.

get
(the value of a slot) To retrieve the value of
the slot.

getter
A function that is applied to an object and
returns the value of one of the object’s slots.

handler
A function that is used to respond to a
signaled condition.

hash code
A conceptual object consisting of a hash id
and its associated hash state.

hash function
A function, associated with a table, that
computes hash code. All hash functions
have one argument, a key, and return two

values, a hash id and a hash state, which
together represent the hash code. See also
equivalence predicate.

hash id
An integer encoding of an object.

hash table
A table.

hash state
An object of implementation-dependent
type which is associated with a particular
hash id and can be used by the
implementation to determine whether the
hash id has been invalidated.

identical
(of two objects) Computationally
equivalent. That is, there is no way for any
portable Dylan program to distinguish
them; they are the same under the
equivalence predicate ==.

immutable
Not capable of being modified after it is
created. It is an error to attempt to modify
an immutable object, though Dylan
implementations are not required to detect
this error. The opposite of immutable is
mutable.

implicit definition
A definition created by define method
or by the slot specifications of define
class.

implicitly defined
1. (of a generic function) Created by an
implicit definition rather than by define
generic. 2. (of a method) Created by a
slot specification in a define class
definition, rather than by define method.

G L O S S A R Y

425

imported binding
A binding imported from a used module. A
binding owned by another module must be
imported in order to be visible to code
inside the module.

improper list
A list that does not have the empty list as
the tail of its last pair. An improper list is
either a dotted list or a circular list.

indirect instance
(of a type) A direct instance of one of the
proper subclasses of the type.

indirect superclass
(of a class) A class that is a general
superclass of one of the class’s direct
superclasses.

infix operator
The name of a function or macro that is
normally called using infix notation. Infix
operators must be prefixed by the infix
operator escape character (“\”) in order to
be used in any way other than as the
operator in an infix function call.

init keyword
A keyword specified in a class definition,
used to initialize a slot. An init keyword
may be required or optional.

init specification
An init specification provides an initial
value for the slot or a default value for an
init-keyword. There are three kinds of init
specifications. See page 58 for a complete
description.

initialization argument
A keyword argument supplied to make,
used to initialize an keyword initializable
slot.

initialize
1. (an object) To prepare an object for use,
by initializing its slots and calling the
initialize function on the object. All Dylan
objects are automatically initialized
immediately after they are allocated. 2. (a
slot) To give the slot its initial value. A
program can test to see whether a slot has
been initialized by calling the function
slot-initialized? There is no
mechanism for resetting a slot to the
uninitialized state. 3. (a variable) To bind
the variable to its initial value.

instance
(of a type) A general instance of the type.

instantiable class
A class that can be used as the first
argument to make. The opposite of an
instantiable class is an uninstantiable class.
Note that an abstract class may be
instantiable.

iteration protocol
A protocol that is common to collections,
consisting of the functions
forward-iteration-protocol and
backward-iteration-protocol. All
collections must implement
forward-iteration-protocol. Some
collections that are stable under iteration
also implement
backward-iteration-protocol.

iteration stability
The property of being stable under
iteration.

iteration binding
A binding associated with a clause in a for
statement. Each iteration binding is
associated with only one clause.

G L O S S A R Y

426

keyword argument list
A sequence containing an even number of
elements that are alternating keywords and
values (i.e. a sequence of keyword/value
pairs). When there is more than one
keyword/value pair with the same
keyword, the first such pair determines the
value associated with that keyword in the
keyword argument list.

keyword initializable
(of a slot) A slot that may be given an initial
value by a keyword argument in a call to
make. See also initialization arguments.

keyword parameter
(of a function) A parameter that
corresponds to an optional keyword/value
pair. Keyword parameters are specified by
name rather than position.

keyword/value pair
Two successive arguments (a keyword and
a value, respectively) supplied in a function
call.

library
A set of modules and code, which is
available for use by Dylan programs.
Libraries are the unit of compilation,
sealing, and optimization.

literal constant
An object that is specified explicitly in
program text. Literal constants are
immutable.

local precedence order
(of a class and its direct superclasses) An
ordering of classes, including the class and
its direct superclasses, in which the class
precedes its direct superclasses, and each

direct superclass precedes all other direct
superclasses that follow it in the definition
of the class.

local scope
A scope that includes a limited section of
program text.

local binding
A binding created by a local declaration.
Local bindings are visible within the
remainder of the smallest enclosing body
containing the declaration which creates the
bindings.

mandatory keyword
(of a generic function) A keyword that must
be recognized by all of the methods of that
generic function. Mandatory keywords are
specified in the generic function’s
parameter list, after #key or as the key:
initialization argument to make of
<generic-function>.

method
A basic callable unit of code. It includes a
parameter list, a return value specification
and a body.

method dispatch
The process of determining which method
to call when a generic function is applied to
arguments.

module
A namespace of bindings.

module binding
A binding that can be referenced from any
code associated a particular module.

G L O S S A R Y

427

most specific method
The method whose specializers most closely
match the arguments of a function call. A
method specialized on a subclass is more
specific than a method specialized on
superclasses.

multimethod
A method that has more than one
specialized parameter.

multiple inheritance
Inheritance from more than one direct
superclass. See also single inheritance.

multiple values
Zero or more values returned by an
expression. Used in contrast to one value,
as in “this function returns multiple values.”

mutable
Capable of being modified after it is
created. The opposite of mutable is
mutable.

named value reference
An expression which is a reference to a
binding.

natural order
The order in which elements of a collection
are traversed by the iteration protocol for a
particular iteration. If a collection is stable
under iteration, every iteration over the
collection has the same natural order, which
defines a natural order for the collection
itself.

next method
(during a generic function call) The method
that is next most specific, after the method
that is currently executing, in the sequence
of applicable methods for that generic
function call.

next-method parameter
A parameter, usually called next-method.
The value of the next-method parameter is
automatically supplied by the generic
function dispatch mechanism. It is either
#f (if there is no next method) or a
function that calls the next method after
defaulting any unsupplied arguments.
There is no way for a user to specify a
different next method.

non-local exit
A transfer of control, through an exit point,
out of a local region of code, that terminates
the normal execution of that code and the
normal return of values.

normal exit
Completing execution and returning
without taking a non-local exit.

object
A unit of data in a Dylan program. Objects
are instances of classes, may be stored in
variables, slots, and collections, may be
passed as arguments to functions, and may
be returned as values of functions. In
Dylan, functions and classes are themselves
objects.

open class
A class that may have subclasses that are
not explicitly defined in the same library.
The opposite of an open class is a sealed
class.

open generic function
A generic function that may have methods
that are not explicitly defined in the same
library. The opposite of an open generic
function is a sealed generic function.

G L O S S A R Y

428

owned
(of a binding, by a module) Created by a
create clause in the module’s define
module definition, or by a definition
associated with the module.

pair
An instance of <pair>.

parameter
(of a function) A variable that is declared in
the parameter list of a function and specifies
part of the function’s calling protocol.
Parameters are lexically bound within the
function body, and are bound to their initial
values when the function is called. Dylan
supports required parameters, rest
parameters, keyword parameters, and
next-method parameters.

parameter list
The part of a function definition that
specifies the function’s calling protocol. See
also signature.

predicate function
A function that returns a true or false
value. The names of predicate functions, by
convention, end in a question mark.

primary class
A class that may be used only as the
primary superclass in multiple inheritance.
A class may not have two primary
superclasses unless one is a subclass of the
other. The opposite of a primary class is a
free class.

proper list
A list that has the empty list as the tail of its
last pair.

proper subclass
(of a class) A class which is a subclass of the
class, but is not identical to the class.

proper subtype
(of a type) A type which is a subtype of the
type, but is not equivalent to the type. See
also equivalent types.

protocol
1. (of a class) The methods that all
subclasses of the class either implement or
inherit. 2. (of a function, esp. a generic
function) The signature of the function.

pseudosubtype
Arelation between types. The type T1 is a
pseudosubtype of the type T2 if T1 is a
subtype of the base type of T2 and T1 and T2
are not disjoint.

required parameter
(of a function) A parameter that
corresponds to an argument that must be
supplied when the function is called.
Required parameters are specified in a fixed
order before other parameters, and their
corresponding arguments must be supplied
in the same order. Required parameters
may be specialized or unspecialized.
Compare rest parameter, keyword
parameter, and next-method parameter.

rest parameter
(of a function) A parameter that allows a
function to accept a variable number of
arguments following those that correspond
to the required parameters. The additional
arguments are stored in a sequence.

G L O S S A R Y

429

return value specification
An optional part of a function definition
that specifies the number and types of the
values returned by the function. See also
signature.

sealed class
A class that cannot have direct subclasses
other than those explicitly defined in the
same library. The opposite of a sealed class
is an open class.

sealed generic function
A generic function that cannot have
methods that are not explicitly defined in
the same library. The opposite of a sealed
generic function is an open generic
function.

sequence
An instance of <sequence>, a type of
collection which uses successive
non-negative integers as keys.

set
(the value of a slot) To replace the value of
the slot with a new value.

setter
A function used to set the value of a slot.
By convention, the name of a setter is the
name of the getter concatenated with the
suffix -setter.

shadow
(a binding) To hide the binding within a
portion of program text, by creating a new
local binding with the same name.

shallow copy
(of an object) A new object that has the
same contents as the object. The contents
are not copied, but are the same objects
contained in the original object.

signature
(of a function) The parameter list and
return value specification of the function.

single inheritance
Inheritance from only one direct superclass.
See also multiple inheritance.

singleton
A type used to indicate an individual
object. A singleton has only one instance.

slot
A unit of local storage available within an
instance or a class, which is used to store
state in the instance or class.

slot accessor
A getter or setter.

specialize
1. (a variable) To restrict the variable to
values that are general instances of a
particular type. 2. (a generic function) To
define a method for the generic function
that is applicable only to instances of a
particular type or types. 3. (a method) To
specify the types of the parameters of the
method.

specializer
A type, especially when it is used to
specialize a parameter, variable, or slot.

stable under iteration
(of a collection) The proprty of a collection
that any two iterations over the collection
are guaranteed to produce the same values
in the same order (unless, of course, the
collection has been modified). See also
natural order and sequence.

G L O S S A R Y

430

stretchy collection
A collection that may grow or shrink to
accomodate adding or removing elements.

table
An object, also known as a hashtable, that
maps arbitrary keys to objects. Each table
has an associated equivalence predicate
which is used to compare keys. The table
maps keys that are equivalent under the
predicate to the same table element.

true
1. The canonical true value, #t. 2. Any
object other than the unique false value, #f.

type
A Dylan object that categorizes objects. See
“Overview” on page 47.

type equivalent
See equivalent types.

type-for-copy
(of an object) An instantiable type suitable
for making copies of an object. Instances of
the type-for-copy must be mutable.

unbounded sequence
A sequence that is infinite or circular.

uninstantiable class
A class that cannot be used as the first
argument to make. The opposite of an
uninstantiable class is an instantiable class.

visible modification
(with respect to an equivalence predicate)
A modification that changes the
equivalence class of the object. The
modifications that are visible to an
equivalence predicate are determined by
the definition of the predicate.

white space
Any number of contiguous space, tab,
newline, and newpage characters. The
amount of contiguous white space is not
significant in program code.

431

Index

Symbols

*

265
- 265

/

265

-

256
#-word 17

&

400

+

264

:=

397
< 258

<

258

<=

260

<abort>

242

<array>

210

<boolean>

192

<byte-string>

224

<character>

190

<class>

186

<collection>

199

<complex>

193

<condition>

234

<deque>

216

<double-float>

196

<empty-list>

220

<error>

236

<explicit-key-collection>

202

<extended-float>

197

<float>

196

<function>

229

<generic-function>

231

<integer>

197

<list>

218

<method>

233

<mutable-collection>

205

<mutable-explicit-key-collection>

207

<mutable-sequence>

207

<number>

192

<object>

183

<object-table>

228

<pair>

220

<range>

221

<rational>

197

<real>

194

<restart>

240

<sealed-object-error>

238

<sequence>

202

<serious-condition>

236

<simple-error>

237

<simple-object-vector>

215

<simple-restart>

241

<simple-vector>

213

<simple-warning>

239

<single-float>

196

<singleton>

189

<stretchy-collection>

209

<stretchy-vector>

215

<string>

223

<symbol>

191

<table>

226

<type>

185

<type-error>

237

<unicode-string>

225

<vector>

212

<warning>

238

-=

255

>

259

>=

260

^

270

|

399

~

255

~=

258

~==

256

This document was created with FrameMaker 4.0.4

I N D E X

432

A

abs

271
abstract class 50
accept all keyword arguments 84
accept a variable number of arguments 85
accept keyword arguments 84
accessible bindings 27

add

296

add!

297

add-new

298

add-new!

299

all-superclasses

332
alphabetic character 17
altering a collection 117

always

338
ambiguous methods 93

any?

318

apply

339
aref 289
aref-setter 289
as 275
ash 273
as-lowercase 278
as-lowercase! 278
as-uppercase 277
as-uppercase! 277

B

backward-iteration-protocol 328
base type 48
binary operator call 14
binding 10
body 11
built-in defining macro 11
built-in statement macro 15

C

case 385

ceiling 267
ceiling/ 268
character literal 18
choose 321
choose-by 322
class precedence list 52
closed over 81
closure 81
code body 21
collection alignment 119
collection keys 115
comment 16
complement 335
compose 334
concatenate 311
concatenate-as 312
concrete class 50
condition 103
condition handler establishing 13
congruent parameter lists 91
conjoin 336
constant 10
constituent 11
copy-sequence 311
curry 336

D

defaulted initialization arguments 63
define class 366
define constant 363
define generic 364
define inert domain 376
define library 374
define macro 377
define method 365
define module 369
define variable 362
definition 11
delimited comment 16
destructively modify 118
dimension 285

I N D E X

433

dimensions 284
direct instance 50
direct subclass 51
direct-subclasses 333
direct superclass 51
direct-superclasses 333
disjoin 335
disjoint 57
do 315

E

element 286
element reference 15
elements 115
element-setter 287
element type 122
empty? 281
equivalence class 120
equivalence predicate 120
equivalent 48
equivalent types 48
even? 262
every? 319
exit 103, 106
explicit definition 27
explicit key collection 115
explicitly known 131
exported bindings 27
expression 13

F

file header 21
fill! 325
find-key 323
first 290
first-setter 291
floor 266
floor/ 268
for 389

format arguments 111
format directives 111
format strings 111
forward-iteration-protocol 326
free class 50
freshly allocated collection 118
function call 14

G

gcd 274
general subclass 51
general superclass 50
getter 24
getter method 56
graphic character 17

H

handler 103
hash codes 121
hash function 121
hash id 121
hash state 121
head 294
head-setter 295
hygienic 159

I

identity 274
if 383
implicit definition 27
imported bindings 27
indirect subclass 51
init expression 58
init function 58
initialization argument 59
initialization protocol 50

I N D E X

434

initialize 247
init specification 57
init value 58
inside stack 105
instance? 331
instantiable class 50
integral? 263
interchange format 21
intersection 307
iteration protocol 116

K

key-sequence 286
keys of collections 115
key test 116
key-test 285
keyword 18
keyword initializable 59
keyword parameters 83

L

last 293
last-setter 293
lcm 273
let 378
let handler 380
libraries 9
limited 251
list 249
literal constant 13
local 379
local declaration 12
local method bindings 13
local precedence order 52
Local precedence order constraint 52
local value bindings 12
logand 272
logbit? 272
logior 271

lognot 272
logxor 271

M

macro 10, 141
make 246
mandatory keywords 85
map 316
map-as 316
map-into 317
max 261
member? 322
merge-hash-codes 330
method 396
method dispatch 77, 93
middle stack 105
min 260
module 9
modulo 270
monotonicity constraint 52
more specific method 93
multiple values 41

N

name 17
name character 17
named value reference 14
natural order 117
negative 266
negative? 263
next-method 96
next-method parameter 83
number 18
numeric character 17

I N D E X

435

O

object-class 332
object-hash 331
odd? 262
open class 50
operand 13
operator 18
outside stack 105
owned module binding 27

P

pair 249
parameter list 16, 77
parenthesized expression 15
permit keywords 85
pop 302
pop-last 303
positive? 263
precede in a class precedence list 52
primary class 50
program 9
proper subtype 48
pseudosubtype 48
punctuation 19
push 302
push-last 302

R

range 250
rank 283
rcurry 337
recognize keywords 85
recovery 103, 106
recovery protocol 110
reduce 320
reduce1 321
remainder 270
remove 300

remove! 300
remove-duplicates 309
remove-duplicates! 310
remove-key! 324
replace-elements! 324
replace-subsequence! 313
require a fixed number of arguments 84
required parameters 83
required value declaration 89
reserved word 14
restarting 109
rest parameters 83
rest value declaration 89
return type declarations 83
reverse 303
reverse! 304
round 267
round/ 269
row-major-index 284

S

sealed class 50
sealing 131
sealing directives 131
second 290
second-setter 292
select 386
sequence 115
setter 24
setter method 56
shallow-copy 279
signaler 103
signaling unit 105
single-line comment 16
singleton 250
singleton specializers 87
size 281
size-setter 282
slot-initialized? 248
slot reference 15
slots 50

I N D E X

436

sort 305
sort! 306
source record 9
special definition 12
specialize 83, 86
specialized 10
stable under iteration 116
statement 15
statement macro 15
string literal 18
subsequence-position 314
subtype? 332
supplied initialization arguments 63
symbol literal 18

T

table-protocol 329
tail 294
tail-setter 295
third 291
third-setter 292
token 17
top level 20
truncate 268
truncate/ 269
type-for-copy 279
type-union 253

U

unary operator call 14
uninstantiable class 50
union 308
unique string 18
unless 385
unstable under iteration 116
until 388
user-defined defining macro 11
user-defined statement macro 15
using a module 27

V

values 275
value type 89
variable 10
vector 254
visibly modified 121

W

while 388
whitespace 16

Z

zero? 262

I N D E X

437

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe Illustrator

 and
Adobe Photoshop

.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Andrew Shalit, with contributions by
Orca Starbuck and David Moon.

ILLUSTRATOR

Steve Strassmann

PRODUCTION EDITOR

Lorraine Findlay

Special thanks to Kim Barrett for his
timely commentary on language design
questions and wording, to Paul Haahr,
David Moon, and Keith Playford for their
last-minute heroic contributions on a
number of difficult design issues, to
Sonya Keene for her work on producing
an HTML version of this document, and
to James Joaquin for coming up with a
great language name.

Heartfelt acknowledgments are due to
the many people who have contributed
to the design and validation of Dylan
over the years. The current Apple Dylan
team consists of Kim Barrett, Rick Bryan,
Glenn Burke, Bob Cassels, John
Hotchkiss, Jeremy Jones, Phil Kania, Ross
Knights, Mike Lockwood, Robin Mair,
Dave Moon, Paige Parsons, Kálmán Réti,
Carl Schwarcz, Andrew Shalit, David
Sotkowitz, Bill St. Clair, Steve
Strassmann, Derek White and Gail

Zacharias. Past members include Stoney
Ballard, Rick Fleischman, Alice Hartley,
Mike Kahl, Robyn Kozierok, Larisa
Matejic, Neil Mayle, Richard Mlynarik,
Robert Muller, Ike Nassi, Tom Parmenter,
Jeff Piazza, Mark Preece, David
Rosenfeld, Orca Starbuck and Oliver
Steele. A great deal of language design
work was done by the Dylan Partners.
Contributing members of the Gwydion
group include Bill Chiles, Scott E.
Fahlman, Paul Gleichauf, Nick Kramer,
William Lott, Rob MacLachlan and
Robert Stockton. Contributing members
of the Harlequin Dylan team include
Jonathan Bachrach, Roman
Budzianowski, Paul Haahr, Sonya Keene,
Robert Mathews, Scott McKay, Tim
McNerney, Peter Norvig, Keith Playford,
Toby Weinberg and P. Tucker Withington.
Among the independent Dylan Partners
who contributed are Jim Allard, Patrick
C. Beard, Mark C. Chu-Carroll, Mutsumi
Komuro, Jonathan Sobel, Joseph N.
Wilson and Paul R. Wilson. Important
feedback on the language design was
provided by our ever-patient early users,
including Fritz Anderson, Gary Beaver,
Edward Cessna, Geoffrey Clements,
Enrico Colombini, Donn Denman, Ken
Dickey, Mikel Evins, Mark Gavin, James
C. Grandy, Wayne Johnson, Scott Joy, Bo
Klintberg, Gabriel Lawrence, Ted
Lowery, Matthew MacLaurin,
Claes-Fredrik Mannby, Stephen
McConnell, Nick Nallick, Carl Nelson,
Steve Palmen, Paul R. Potts, Mike
Rossetti, Larry Tesler and Andrew
Wason. Additional thanks are due to
Dave Nagel and Apple Computer for
many years of generous funding.
Without the help of these and many
other hands, Dylan could not have been
created.

This document was created with FrameMaker 4.0.4

	Dylan Reference Manual
	Contents
	About This Book
	Introduction
	Background and Goals
	Language Overview
	Manual Notation

	Syntax
	Overview
	Libraries and Modules
	Bindings
	Macros
	Bodies
	Definitions
	Local Declarations
	Expressions
	Statements
	Parameter Lists
	Lexical Syntax
	Special Treatment of Names
	Escaping Names
	Function Call Shorthand

	Top- Level Definitions
	Dylan Interchange Format
	Naming Conventions

	Program Structure
	Modules
	Defining Module Bindings

	Libraries

	Program Control
	Overview
	Function Calls
	General Syntax
	Slot Reference
	Element Reference

	Operators
	Assignment
	Conditional Execution
	True and False

	Iteration
	Iteration Statements
	Tail Recursion

	Non- Local Exits and Cleanup Clauses
	Multiple Values
	Order of Execution
	Execution Order Within Expressions

	Types and Classes
	Overview
	The Type Protocol
	Base Types and Pseudosubtypes
	Type Disjointness

	Classes
	Features of Classes
	Creating Classes
	Class Inheritance
	Computing the Class Precedence List

	Slots
	Slot Inheritance
	Slot Specifications
	Init Specifications
	Init Keywords
	Slot Allocation
	Constant Slots
	Specializing Slots
	Overriding Slots in Subclasses
	Using Slots

	Instance Creation and Initialization
	Overview
	Additional Behavior of Make and Initialize
	Initialization of Class Allocated Slots
	Testing the Initialization of a Slot

	Inherited Slot Specifications
	Initialization Argument Specifications
	Initialization Argument Inheritance

	Singletons
	Union Types
	Limited Types
	Limited Type Constructor
	Limited Integer Types
	Limited Integer Type Protocol

	Limited Collection Types

	Functions
	Overview
	Generic Functions
	Methods
	Methods in Generic Functions
	Local Methods
	Bare Methods
	Closures

	Parameter Lists
	Kinds of Parameters
	Kinds of Parameter Lists
	Specializing Required Parameters
	Keyword Parameters
	Types for Keyword Parameters

	Result Values
	Parameter List Congruency
	Parameter Lists of Implicitly Defined Generic Functions

	Method Dispatch
	Method Specificity
	Calling Less Specific Methods
	Passing Different Arguments to Next- Method
	The Next- Method Parameter

	Operations on Functions

	Conditions
	Background
	Overview
	Signalers, Conditions, and Handlers
	Exception Handling
	Stack Model
	Recovery and Exits
	Restarts
	Recovery Protocols

	Condition Messages
	Introspective Operations

	Collections
	Overview
	The Iteration Protocol

	Collection Keys
	Iteration Stability and Natural Order
	Mutability
	Collection Alteration and Allocation
	Collection Alignment
	Defining a New Collection Class
	Tables
	Element Types
	Limited Collection Types
	Element Type Subclassing
	Creating Limited Collection Types
	Uninstantiable Limited Collection Types
	Instantiable Limited Collection Types

	Sealing
	Overview
	Explicitly Known Objects
	Declaring Characteristics of Classes
	Declaring Characteristics of Generic Functions
	Define Inert Domain
	Rationale
	Pseudosubtype Examples
	Abbreviations for Define Inert Domain
	Implied Restrictions on Method Definitions

	Macros
	Overview
	Compilation and Macro Processing

	Extensible Grammar
	Definition Macros
	Statement Macros
	Function Macros

	Macro Names
	Rewrite Rules
	Patterns
	Special Rules for Definitions
	Special Rules for Statements
	Special Rules for Function Macros

	Pattern Variable Constraints
	Intermediate Words

	Templates
	Auxiliary Rule Sets
	Hygiene
	Intentional Hygiene Violation
	Hygiene Versus Module Encapsulation

	Rewrite Rule Examples
	Statement Macros
	Begin
	Block
	Case
	For
	If
	Method
	Select
	Unless
	Until
	While

	Definition Macros
	Define Class
	Define Constant
	Define Domain
	Define Generic
	Define Library
	Define Method
	Define Module
	Define Variable

	Additional Examples
	Test and Test- setter
	Transform!
	Formatting- table
	With- input- context
	Define Command
	Get- resource
	Completing- from- suggestions
	Define Jump- instruction

	The Built- In Classes
	Overview
	Objects
	Types
	Types
	Classes
	Singletons

	Simple Objects
	Characters
	Symbols
	Booleans

	Numbers
	Numbers
	Complex Numbers
	Reals
	Floats
	Rationals
	Integers

	Collections
	Collections
	Explicit Key Collections
	Sequences
	Mutable Collections
	Stretchy Collections
	Arrays
	Vectors
	Deques
	Lists
	Ranges
	Strings
	Tables

	Functions
	Functions
	Generic Functions
	Methods

	Conditions
	Conditions
	Serious Conditions
	Errors
	Warnings
	Restarts
	Aborts

	The Built- In Functions
	Overview
	Constructing and Initializing Instances
	General Constructor
	Initialization
	Specific Constructors

	Equality and Comparison
	Not and Identity
	Equality Comparisons
	Magnitude Comparisons

	Arithmetic Operations
	Properties
	Arithmetic Operations

	Coercing and Copying Objects
	General Coercion Function
	Coercing Case
	Copying Objects

	Collection Operations
	Collection Properties
	Selecting Elements
	Adding and Removing Elements
	Reordering Elements
	Set Operations
	Subsequence Operations
	Mapping and Reducing
	Simple Mapping
	Extensible Mapping Functions
	Other Mapping Functions

	The Iteration Protocol
	The Table Protocol

	Reflective Operations on Types
	Functional Operations
	Function Application
	Reflective Operations on Functions
	Operations on Conditions
	Signaling Conditions
	Handling Conditions
	Introspection on Conditions

	Other Built- In Objects
	Other Built- In Objects

	The Built- In Macros and Special Operators
	Overview
	Definitions
	Local Declarations
	Statements
	Conditionals
	Iteration Constructs

	Special Operators
	Assignment
	Conditional Execution

	Appendix A
	General Notes
	Lexical Notes
	Lexical Grammar
	Comments
	Tokens
	Reserved Words
	Names, Symbols and Keywords
	Operators
	Character and String Literals
	Numbers

	Grammar
	Program Structure
	Property Lists
	Fragments
	Definitions
	Local Declarations
	Expressions
	Statements
	Methods
	Macro Definitions
	Patterns
	Templates
	Auxiliary Rule Sets

	Glossary
	Index

