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P R E F A C E

 

About This Book

 

This book is a draft of the Dylan Reference Manual.

It contains the complete language description, incorporating all language 
design decisions made to date (September, 1995).

The book is a draft because it has not undergone final review or proofreading. 
It is, however, believed to be complete.

The book is designed as specification and reference for the Dylan language. It is 
not designed as a tutorial. Programmers who wish to learn Dylan may want to 
begin with a book written for that purpose before moving on to this volume.

The book is divided into three parts: the first part contains a number of concept 
chapters describing the overall structure and semantics of the language; the 
second part contains reference chapters describing every class, function, and 
syntactic construct in the language; the third part contains the BNF for Dylan’s 
syntax and a glossary of terms.

 

 

This document was created with FrameMaker 4.0.4



 

x

 

 

 

P R E F A C E



 

CHAPTER 1

 

Contents

 

1

 

Contents

 

Figure 1-0
Listing 1-0
Table 1-0

 

1 Introduction

 

Background and Goals 3
Language Overview 4
Manual Notation 6

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  1  

 

2

 

Contents



 

C H A P T E R  1

 

Background and Goals

 

3

 

Introduction 1

 

Background and Goals 1

 

Dylan is a general-purpose high-level programming language, designed for 
use both in application and systems programming.  Dylan includes garbage 
collection, type-safety, error recovery, a module system, and programmer 
control over runtime extensibility of programs.

Dylan is designed to allow efficient, static compilation of features normally 
associated with dynamic languages.

Dylan was created out of the belief that programs have become too complex for 
traditional static programming languages.  A new generation of software—
software that can be built quickly and enhanced over time—requires 
higher-level programming tools.  The core of these tools is a simple and 
expressive language, one which protects the programmer from low-level 
implementation details, but still produces efficient executables.

Dylan was designed from the ground up with a thoroughly integrated object 
model, syntax, and control structures. It is not source code compatible with any 
existing languages, and can therefore be more internally self-consistent. At the 
same time, Dylan’s syntax and object-model allow a high-level of integration 
with libraries written in other languages such as C and C++.

Dylan avoids providing multiple ways of doing the same thing.  Quite the 
opposite, the language often uses a single construct to achieve several ends.  
For example, Dylan’s type declarations improve the efficiency and readability 
of programs, they ensure type safety, and they provide the basis of 
polymorphic dispatch, the basic mechanism of object-oriented flow of control.

And while simplicity of language is very important, it should not and need not 
come at the price of expressiveness. Multi-method dispatch is an example of a 
Dylan feature that makes the language more powerful and simultaneously 
makes Dylan programs easier to understand.

Dylan demonstrates that a programming language can be highly expressive, 
can encourage the use of appropriate abstraction, can make programming more 
productive, and can make the programming process enjoyable, all without 
sacrificing the ability to compile into code that is very close to the machine, and 
therefore very efficient.
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Language Overview

 

Language Overview 1

 

Dylan is written in a very regular syntax. In addition to making the language 
easier to read and write, the layered composition of the syntax supports a 
macro system that is language-aware. The macro system does not simply 
perform text substitution, but rather performs syntax fragment substitution. 
This allows the extension of the language within bounds that are safe, 
semantically well-defined, and in accord with the ‘syntactic flavor’ of the 
language.

Bindings (Dylan’s analog to variables) are lexically scoped and fully resolved at 
compile time. Binding names are not retained in running programs. The 
module system allows bindings to be private or shared. Names can be changed 
upon import to a module, so the possibility of irreconcilable name conflicts 
among separately developed modules is eliminated. Modules can provide 
multiple interfaces to the same code base, decreasing the chance of exposing a 
client to inappropriate interfaces.

Flow of control is supported through polymorphic function calls, a variety of 
conditional and iteration constructs, and a non-local transfer mechanism (with 
protected regions). 

All objects are first class, including numbers, classes and functions. This means 
that  all objects can be used as arguments to functions, returned as values, 
stored in data structures, and are subject to introspection. All objects are typed, 
and type-safety is guaranteed, either through compile-time or runtime type 
checking. There are no facilities for deallocating objects. Objects are deallocated 
automatically when they can no longer be reached by a program.

Types are used to categorize and specify the behavior of objects. An object may 
be an instance of any number of types. Classes are a particular kind of type 
used to define the structure and inheritance of instances. Every Dylan object is 
a direct instance of exactly one class, and a general instance of that class and 
each of its superclasses. The root of the class hierarchy (and of the type 
hierarchy) is a class called 

 

<object>

 

.

Values associated with an instance are stored in slots of the instance.

Classes do not define scopes for names. Names are scoped by modules and 
local binding declarations.
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Functions are the active portions of Dylan programs. Functions accept zero or 
more arguments and return zero or more values. Functions are specialized to 
accept arguments of particular types, and will signal an error if they are called 
with arguments that are not instances of those types. The return values of 
functions are similarly type-checked.

A method is a basic unit of callable code. When a method is called, it creates 
local bindings for its arguments and executes a body in the resulting 
environment. A method can be called directly by a program or indirectly 
through a generic function that contains it.

A generic function contains a number of methods. When a generic function is 
called, it finds the methods which are applicable to the arguments, and passes 
control to the most specific of those methods.

Slots are accessed through functions. This ensures that instances present an 
abstract interface to their clients, which assists both in polymorphism and in 
program redesign.

Sealing declarations allow the programmer to declare portions of the class 
hierarchy and set of functions to be invariant. This supports the enforcement of 
protocols, compile-time resolution of polymorphic behavior, and efficient inline 
slot access. Portions of a program which are not sealed can be extended at run 
time or by additional libraries.

Dylan includes a number of predefined libraries, including an exception 
system, collections, arithmetic, higher-order functions, and introspection.

The exception system is object-based.  It uses calling semantics (thereby 
allowing recovery)  but also provides exiting handlers.

The collection system includes a number of predefined collection classes and 
operations built on a simple iteration protocol. Additional classes defined in 
terms of this protocol have access to the full suite of collection operations.

Arithmetic is fully object-based and extensible.

A library of higher-order operations on functions supports function 
composition.

A library of introspective functions supports the run time examination of 
objects, including classes and functions.
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Manual Notation 1

 

This manual uses a small number of typographic conventions:

 

■

 

Monospaced font

 

 (courier 12) is used to indicate text which should 
appear verbatim in programs.

 

■

 

Italic

 

 

 

font

 

 is used to name parameters, placeholders for actual program text.

 

■

 

References to entries in the BNF are given the same name as in the BNF, and 
are followed by a subscripted italic 

 

bnf

 

.

 

■

 

Bold

 

 is used for the first use of terms.

 

■

 

Bold

 

 is also used for meta-syntactic punctuation, as follows:

 

n

 

[ ]  

 

Contents are optional

 

n

 

{ }

 

  Contents appear once

 

n

 

{ }*

 

  Contents appear zero or more times

 

n

 

{ }+  

 

Contents appear one or more times

 

n

 

|  

 

A choice between the item on the left of the vertical bar and the item on 
the right of the vertical bar, but not both.

If a comma appears between a right curly brace and the following asterisk or 
plus-sign, it indicates that multiple occurances of the contents are separated by 
a comma.  There is no comma after the last occurance.

If a semicolon appears between a right curly brace and the following asterisk or 
plus-sign, it indicates that multiple occurances of the contents are separated by 
a semicolon.  A semicolon following the last occurance is optional.

Sample Dylan code is shown in 

 

small monospaced font

 

. When the return 
value of an expression is shown, it is preceded by an 

 

⇒

 

.

Chapter 10, “Macros,” and Appendix A, “BNF,”  each use a distinctive 
notation, described at the start of the chapter and appendix.
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Syntax 2

 

Overview 2

 

This chapter describes the syntax and structure of a Dylan program, from the 
outside in.  This is one of the two defining characteristics of Dylan.  The other is 
the set of objects on which a Dylan program operates; objects and their types 
are discussed in the following chapters.  This section is only an overview; 
language constructs briefly mentioned here are explained in detail in later 
sections.  A formal specification of Dylan syntax appears in Appendix A, 
“BNF.”

 

Libraries and Modules 2

 

A complete Dylan 

 

program

 

 consists of one or more 

 

libraries

 

.  Some of these 
libraries are written by the programmer, others are supplied by other 
programmers or by the Dylan implementation.  A library is Dylan's unit of 
separate compilation and optimization.  The libraries that compose a program 
can be linked together as early as during compilation or as late as while the 
program is running.  Program structure inside of a library is static and does not 
change after compilation.  However, many Dylan implementations provide an 
incremental compilation feature which allows a library under development to 
be modified, while the program is running, by modifying and recompiling 
portions of the library.

A library contains one or more 

 

modules

 

.  A module is Dylan's unit of global 
name scoping, and thus of modularity and information hiding.  A module can 
be exported from its library; otherwise it is internal to that library.  A library 
can import modules from other libraries.  Only an exported module can be 
imported.

A module contains zero or more source records and a set of bindings.

A 

 

source record

 

 is an implementation-defined unit of source program text. For 
example, in a file-based development environment each source file would be 
one source record.  As another example, in an interactive Dylan interpreter 
each executable unit of programmer input would be a source record.  The 

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  2  

 

Syntax

 

10

 

Bindings

 

source program text in a source record is a body, a grammatical element used in 
several places in Dylan.

 

Bindings 2

 

A

 

 

 

binding

 

 is an association of a name with a value.  The bindings in a module 
persist for the life of the program execution.  The scope of such a binding is its 
module.  That is, the binding is visible to all source-records in the module.  A 
module can export bindings and can import bindings from other modules.  
Only an exported binding can be imported.  A binding is visible to all 
source-records in a module that imports it.

A binding may be 

 

specialized

 

. This restricts the types of values that may be 
held in the binding.  An error will be signaled on any attempt to initialize or 
assign the binding to a value that is not of the correct type.

A binding is either 

 

constant

 

 or 

 

variable

 

.  A constant (or read-only) binding 
always has the same value.  In contrast, a variable (or writable) binding can 
have its value changed, using the assignment operator 

 

:=

 

.  Most bindings in a 
typical Dylan module are constant.

 

Macros 2

 

A 

 

macro

 

 is an extension to the core language that can be defined by the 
programmer, by the implementation, or as part of the Dylan language 
specification.  Much of the grammatical structure of Dylan is built with 
macros.  A macro defines the meaning of one construct in terms of another 
construct.  The original construct is the call to the macro.  The replacement 
construct is the expansion of the macro.  The compiler processes the expansion 
in place of the call.

Portions of the call to a macro are substituted into part of the macro definition 
to create the expansion.  This substitution preserves the meanings of names.  In 
other words, each name inserted into the expansion from the macro call refers 
to the same binding that it referred to in the call, and each name inserted into 
the expansion from the macro definition refers to the same binding that it 
referred to in the definition.   
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A macro is named by a binding and thus is available for use wherever that 
binding is visible.  There are three kinds of macros: defining macros, which 
extend the available set of definitions; statement macros, which extend the 
available set of statements; and function macros, which look syntactically like 
function calls but have more flexible semantics.

 

Bodies 2

 

A 

 

body

 

 is a sequence of zero or more constituents.  When multiple constituents 
are present, they are separated by semicolons.  When at least one constituent is 
present, the last constituent can optionally be followed by a semicolon; this 
allows programmers to regard the semicolon as either a terminator or a 
separator, according to their preferred programming style.

A 

 

constituent

 

 is either a definition, a local declaration, or an expression.  
Definitions and local declarations form the structure of a program and do not 
return values.  In contrast, expressions are executed for the values they return 
and/or the side-effects that they perform.

 

Definitions 2

 

A 

 

definition

 

 is either a call to a user-defined defining macro, a call to a built-in 
defining macro, or a special definition.  Typically, a definition defines a binding 
in the module containing the definition.  Some definitions define more than one 
binding, and some do not define any bindings.

A 

 

user-defined defining macro

 

 is a macro that defines a definition in terms of 
other constructs.  A call to a user-defined defining macro always begins with 
the word 

 

define

 

 and includes the name of the defining macro.  This name 
when suffixed by “

 

-definer

 

” is the name of a visible binding whose value is 
the defining macro.  The rest of the syntax of a call to a user-defined defining 
macro is determined by the particular macro.  Some definitions include a body.  
Advanced programmers often define new defining macros as part of 
structuring a program in a readable and modular way.

A 

 

built-in defining macro

 

 is like a user-defined defining macro but is specified 
as part of the Dylan language.  There are eight built-in defining macros: 
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Local Declarations

 

define class

 

, 

 

define constant

 

, 

 

define generic

 

, 

 

define inert

 

, 

 

define library

 

, 

 

define method

 

, 

 

define module

 

, and 

 

define 
variable

 

.

A 

 

special definition

 

 is a definition construct that is built into the grammar of 
Dylan.  There is only one special definition: 

 

define macro

 

.

An implementation can add new kinds of definitions as language extensions. 
Such definitions may be implemented as special definitions.  However, they 
will more commonly take the form of user-defined definition macros that are 
the values of bindings exported by implementation-defined modules.

 

Local Declarations 2

 

A 

 

local declaration

 

 is a construct that establishes local bindings or condition 
handlers whose scope is the remainder of the body following the local 
declaration.

Unlike module bindings, local bindings are established during program 
execution, each time the local declaration is executed. They persist for as long 
as code in their scope is active.  Local bindings persist after the body containing 
them returns if they are referenced by a method created inside the body and a 
reference to the method escapes from the body, so that it could be called after 
the body returns.  Unlike module bindings, local bindings are always variable.  
However, since a local binding has a limited scope, if there is no assignment 
within that scope, the local binding is effectively constant.

A local binding shadows any module binding with the same name and any 
surrounding local binding with the same name.  The innermost binding is the 
one referenced.

The name of a local binding cannot be the name of a macro.

There are three kinds of local declaration: local value bindings (

 

let

 

), local 
method bindings (

 

local

 

), and condition handler establishment (

 

let 
handler

 

).

The 

 

local value bindings

 

 construct, 

 

let

 

, executes an expression and locally 
binds names to the values returned by that expression.
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The 

 

local method bindings

 

 construct, 

 

local

 

, locally binds names to bare 
methods.  These bindings are visible in the remainder of the body and also 
inside the methods, permitting recursion.

The 

 

condition handler establishing

 

 construct, 

 

let handler

 

, establishes a 
function to be called if a condition of a given type is signaled during the 
execution of the remainder of the body or anything the body calls.  The handler 
is disestablished as soon as the body returns.  Unlike the other two kinds of 
local declaration, 

 

let handler

 

 does not establish any bindings.

 

Expressions 2

 

An 

 

expression

 

 is a construct that is executed for the values it returns and/or 
the side-effects that it performs.  The “active” portions of a Dylan program are 
expressions.  An expression is either a literal constant, a named value reference, 
a function call, a unary operator call, a binary operator call, an element 
reference, a slot reference, a parenthesized expression, or a statement.

An 

 

operand

 

 is a restricted expression: it cannot be a unary or binary operator 
call nor a symbol literal.  The other seven forms of expression are allowed.  
Operands appear in situations in the grammar where an expression is desirable 
but the full generality of expressions would make the grammar ambiguous.

A 

 

literal constant

 

 directly represents an object.  Literal constants are available 
for numbers, characters, strings, symbols, boolean values, pairs, lists, and 
vectors. For example:

number

 

123, 1.5, -4.0, #x1f4e

 

character

 

'a', '\n'

 

string

 

"foo", "line 1\nline 2"

 

symbol

 

test:, #"red"

 

boolean value

 

#t, #f

 

pair

 

#(1 . "one")

 

list

 

#(1, 2, 3)

 

vector

 

#[1, 2, 3]
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Expressions

 

Literal constants are immutable.  Attempting to modify an immutable object 
has undefined consequences.  Immutable objects may share structure.  Literal 
constants that are equal may or may not be identical.

A symbol can be indicated in two ways: as a keyword (for example, 

 

test:

 

) or 
as a unique string (for example, 

 

#"red"

 

).  The difference is purely syntactic; 
the choice is provided to promote program readability.

A string literal can be broken across lines by writing two string literals in a row, 
separated only by whitespace; they are automatically concatenated (without a 
newline character).

A 

 

named value reference

 

 returns the value of a visible binding given its name.  
For example, 

 

foo

 

.  The referenced binding can be a module binding (either 
constant or variable) or a local binding established by a local declaration or by 
a parameter list.  The value of the binding must not be a macro.

A 

 

reserved word

 

 is a syntactic token that has the form of a name but is 
reserved by the Dylan language and so cannot be given a binding and cannot 
be used as a named value reference.  There are seven reserved words in Dylan: 

 

define

 

, 

 

end

 

, 

 

handler

 

, 

 

let

 

, 

 

local

 

, 

 

macro

 

, and 

 

otherwise

 

.

A 

 

function call

 

 applies a function to arguments, and returns whatever values 
the function returns.  The function is indicated by an operand and can be a 
generic function, a method, or a function macro.  The arguments are indicated 
by expressions separated by commas and enclosed in parentheses.  For 
example, 

 

f(x, y)

 

.  For readability, the comma can be omitted between the 
two arguments in a keyword/value pair, for example 

 

element(c, k, 
default: d)

 

 is a function call with four arguments.

A 

 

unary operator call

 

 consists of an operand preceded by one of the two unary 
operators - (arithmetic negation) or ~ (logical negation).  For example, - x.  
This is actually an abbreviated notation for a function call.

A binary operator call consists of two expressions separated by one of the 
binary operators + (addition), - (subtraction), * (multiplication), / (division), ^ 
(exponentiation), = (equality), == (identity), < (less than), > (greater than), <= 
(less than or equal), >= (greater than or equal), ~= (not equal), ~== (not 
identical), & (logical and), | (logical or), or := (assignment).  When binary 
operator calls are chained together, they are grouped by rules of precedence 
and associativity and by parentheses.  For example, (a - b) * x + c * x 
^ 2.  Except for the last three operators, a binary operator call is actually an 
abbreviated notation for a function call.  The last three operators (&, |, and :=) 
are treated specially be the compiler. 
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An element reference consists of an operand that indicates a collection and an 
expression in square brackets that indicates a key.   Instead of a key, there can 
be multiple expressions separated by commas that indicate array indices. For 
example, c[k] or a[i, j]. This is actually an abbreviated notation for a 
function call.

A slot reference is another abbreviated notation for a function call.  It consists 
of an operand that indicates an object, a period, and a named value reference 
that indicates a one-argument function to apply to the object.  Typically the 
function is a slot getter but this is not required.  For example, 
airplane.wingspan.

A parenthesized expression is any expression inside parentheses.  The 
parentheses have no significance except to group the arguments of an operator 
or to turn a general expression into an operand.  For example, (a + b) * c.

Statements 2

A statement is a call to a statement macro.  It begins with the name of a visible 
binding whose value is a statement macro.  The statement ends with the word 
end optionally followed by the same name that began the statement.  In 
between is a program fragment whose syntax is determined by the macro 
definition.  Typically this fragment includes an optional body.  For example, 
if (ship.ready?) embark(passenger, ship) end if.

A statement macro can be built-in or user-defined.

A user-defined statement macro is a macro that defines how to implement a 
statement in terms of other constructs.  Advanced programmers often define 
new statement macros as part of structuring a program in a readable and 
modular way.

A built-in statement macro is like a user-defined statement macro but is 
specified as part of the Dylan language.  There are nine built-in statement 
macros: begin, block, case, for, if, select, unless, until, and while.

An implementation can add new kinds of statements as language extensions.  
Such a statement takes the form of a user-defined statement macro that is the 
value of a binding exported by an implementation-defined module.



C H A P T E R  2  

Syntax

16 Parameter Lists

Parameter Lists 2

Several Dylan constructs contain a parameter list, which describes the 
arguments expected by a function and the values returned by that function.  
The description includes names, types, keyword arguments, fixed or variable 
number of arguments, and fixed or variable number of values.  The argument 
names specified are locally bound to the values of the arguments when the 
function is called.  The value names specified are only for documentation.

The syntactic details of parameter lists are described in “Methods” on page 412.

Lexical Syntax 2

Dylan source code is a sequence of tokens.  Whitespace is required between 
tokens if the tokens would otherwise blend together. Whitespace is optional 
between self-delimiting tokens.  Alphabetic case is not significant except within 
character and string literals.

Whitespace can be a space character, a tab character, a newline character, or a 
comment.  Implementations can define additional whitespace characters.

A comment can be single-line or delimited.  Although comments count as 
whitespace, the beginning of a comment can blend with a preceding token, so 
in general comments should be surrounded by genuine whitespace.

A single-line comment consists of two slash characters in a row, followed by 
any number of characters up to and including the first newline character or the 
end of the source record.  For example, // This line is a kludge!.

A delimited comment consists of a slash character immediately followed by a 
star character, any number of characters including balanced slash-star / 
star-slash pairs, and finally a star character immediately followed by a slash 
character. For example, /* set x to 3 */.

A single-line comment may appear within a delimited comment; occurances of 
slash-star or star-slash within the single line comment are ignored.
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A token is a name, a #-word, an operator, a number, a character literal, a string 
literal, a symbol literal, or punctuation.

A name is one of the following four possibilities:

■ An alphabetic character followed by zero or more name characters.

■ A numeric character followed by two or more name characters including at 
least two alphabetic characters in a row.

■ A graphic character followed by one or more name characters including at 
least one alphabetic character.

■ A “\” (backslash) followed by a function operator. 

An alphabetic character is any of the 26 letters of the Roman alphabet in upper 
and lower case.

A numeric character is any of the 10 digits.

A graphic character is one of the following:

! & * < = > | ^ $ % @ _

A name character is an alphabetic character, a numeric character, a graphic 
character, or one of the following:

- + ~ ? /

The rich set of name characters means that name and operator tokens can 
blend.  Thus Dylan programs usually set off operators with whitespace.

Implementations can add additional characters but programs using them will 
not be portable.

A #-word  is one of #t, #f, #next, #rest, #key, or #all-keys.  The first two 
are literal constants, the others are used in parameter lists.  Implementations 
can add additional implementation-defined #-words, but programmers cannot 
add their own #-words.
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An operator is one of the following:

+ addition
- subtraction and negation
* multiplication
/ division
^ exponentiation
= equality
== identity
< less than
> greater than
<= less than or equal
>= greater than or equal
~= not equal
~== not identical
& logical and
| logical or
:= assignment
~ logical negation

Programmers cannot add their own operators.

A number is a decimal integer with an optional leading sign, a binary integer, 
an octal integer, a hexadecimal integer, a ratio of two decimal integers with an 
optional leading sign, or a floating-point number.  The complete syntax of 
numbers is given in “Numbers” on page 406.

A character literal is a printing character (including space, but not ' nor \) or a 
backslash escape sequence enclosed in a pair of single-quote characters '.

A string literal is a sequence of printing characters (including space, but not " 
nor \) and backslash escape sequences enclosed in a pair of double-quote 
characters ".

The backslash escape sequences used in character and string literals allow 
“quoting” of the special characters ', ", and \, provide names for “control” 
characters such as newline, and allow Unicode characters to be specified by 
their hexadecimal codes.

A symbol literal is a keyword or a unique string.  A keyword is a name 
followed immediately by a colon character “:”.  A unique string is a sharp sign 
“#” followed immediately by a string literal.
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Punctuation is one of the following:

( ) parentheses
[ ] square brackets
{, } curly brackets
, comma
. period
; semicolon
= defaulting/initialization
:: type specialization
== singleton specialization
=> arrow
#( list/pair literal
#[ vector literal
?, ?? macro pattern variables
... macro ellipsis

Note that some tokens are both punctuation and operators.  This ambiguity is 
resolved by grammatical context.

Note that some punctuation tokens (for example period and equal sign) are 
capable of blending into some other tokens.  Where this can occur, whitespace 
must be inserted to delimit the token boundary.

Special Treatment of Names 2

Escaping Names 2

The escape character ( \ ) followed by any name or operator-name has the 
same meaning as that name or operator-name, except that it is stripped of 
special syntactic properties. If it would otherwise be a reserved word or 
operator, it is not recognized as such.

For example, \if and if are names for the same binding, but \if is treated 
syntactically as a named value reference, while if is the beginning of a 
statement. Similarly, \+ and + refer to the same binding, but the former is 
treated syntactically as a named value reference, and the latter as an operator.
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For reserved words, this allows the names of statement macros to be exported 
and imported from modules. It does not allow them to be used as the names of 
local bindings, nor does it allow them to be executed. (That is, they cannot be 
used as bindings to runtime values.)

For operators, it allows the operator to be used where a named value reference 
is required, for example as the name in a method definition, as an argument to 
a function, or in a define module export clause. This feature can only be 
used for operators which provide a shorthand for a function call. It cannot be 
used for special operators.

Function Call Shorthand 2

Dylan provides convenient syntax for calling a number of functions. These 
include the operators which are not special operators, the array reference 
syntax, and the singleton syntax.

In all cases, the syntax is equivalent to using the name of the function in the 
current environment. The syntax does not automatically refer to a binding in 
the Dylan module.

Top-Level Definitions 2

Dylan's built-in defining macros can only be used at top level.  When the 
expansion of a user-defined macro includes a call to a built-in defining macro, 
the user-defined macro also can only be used at top level.

A constituent is at top level if and only if it is a direct constituent of a body, no 
preceding constituent of that body is a local declaration, and the body is either 
the body of a source record or the body of a begin statement that is itself a 
constituent at top level. When a constituent appears inside a call to a macro, 
whether that constituent is at top level must be determined after macro 
expansion.

The effect of the above rule is that a constituent at top level is not in the scope 
of any local declarations, is not subject to any condition handlers other than 
default handlers, and is not affected by any flow of control constructs such as 
conditionals and iterations.  This restriction enhances the static nature of 
definitions.
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Dylan Interchange Format 2

The Dylan interchange format is a standard file format for publishing Dylan 
source code.  Such a file has two parts, the file header and the code body.  The 
file header comes before the code body.

The code body consists of a source record.

The  file header consists of one or more keyword-value pairs, as follows:

■ A keyword is a letter, followed by zero or more letters, digits, and hyphens, 
followed by a colon, contains only characters from the ISO 646 7-bit 
character set, and is case-independent.

■ A keyword begins on a new line, and cannot be preceded by whitespace.

■ All text (excluding whitespace) between the keyword and the next newline 
is considered to be the value.  Additional lines can be added by having the 
additional lines start with whitespace.  Leading whitespace is ignored on all 
lines.

■ The meaning of the value is determined by the keyword.

■ Implementations must recognize and handle standardized keywords 
properly, unless the specification for a keyword explicitly states that it can be 
ignored.

■ When importing a file, implementations are free to ignore any non-standard 
keyword-value pairs that they do not recognize.

■ When exporting a file, implementations must use standard keywords 
properly.  Implementations are free to use non-standard keywords. 

■ The definition of a keyword may specify that the keyword may occur more 
than once in a single file header.  If it does not, then it is an error for the 
keyword to occur more than once.  If it does, it should specify the meaning 
of multiple occurances.

The file header cannot contain comments, or other Dylan source code.

Blank lines may not appear in the file header.  A blank line defines the end of 
the file header and the beginning of the code body.  The blank line is not part of 
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the code body.  (A "blank line" is a line consisting of zero or more space or tab 
characters, ending in a newline character.)

The following standard keywords are defined:

language:  language-name [Header keyword] 2

The source record in the file is written in the named language. The only 
portable value for this keyword is infix-dylan.

module:  module-name [Header keyword] 2

The source record in the file is associated with the named module.  This 
keyword is required.

author: text [Header keyword]
copyright: text [Header keyword]
version: text [Header keyword] 2

These are provided for standardization.  They are optional, and can be ignored 
by the implementation.

A typical Dylan source file might look like this:

module: quickdraw

author: J. Random Rect

        Linear Wheels, Inc., "Where quality is a slogan!"

        rect@linear.com

copyright: (c) 1995 Linear Wheels, Inc., All rights reserved

version: 1.3 alpha (not fully tested)

define constant $black-color = ...

Naming Conventions 2

Several conventions for naming module bindings help programmers identify 
the purposes of bindings.  In general, the names of bindings do not affect the 
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semantics of a program, but are simply used to improve readability.  (The 
exceptions to this rule are the “-definer” suffix used by definition macros, 
and the “-setter” suffix, described below.)

■ Module bindings used to hold types begin and end with angle brackets.

<window>

<object>

<character>

<number>

<stream>

<list>

■ Variable module bindings begin and end with asterisks. 

*parse-level*

*incremental-search-string*

*machine-state*

*window-count*

■ Program constants begin with a dollar sign.

$pi

$end-of-file

■ The names of most predicate functions end with a question mark.  
Predicates are functions which return a true or false value.

subclass?

even?

instance?

■ Operations that return a value similar to one of their arguments and which 
also destructively modify the argument end in a !.  (It will often also be the 
case that destructive and non-destructive variations of the function exist.) ! 
isn't a universal warning that an operation is destructive. Destructive 
functions that return other values (like -setter functions and pop) don't 
need to use the ! convention.

reverse!

sort!
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■ Operations that retrieve a value from a location are called getters.  
Operations that store into a location are called setters.  In general, getters 
and setters come in pairs.  Setter binding names are derived by appending 
“-setter” to the corresponding getter binding name.  This convention is 
used to generate setter names automatically, and it is used by :=, the 
assignment operator, to find the setter that corresponds to a given getter.

element      element-setter

size         size-setter

color        color-setter
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Program Structure 3

 

Modules 3

 

Modules are used for creating large-scale namespaces of bindings.  The 
bindings accessible in a module are visible to all the code within the module 
(except where shadowed by a local binding).  Only the bindings explicitly 
exported are visible from outside the module.

Some languages have module systems with distinct support for exporting 
variables, functions, types, and classes. Dylan modules operate only on 
bindings.  Because functions and classes are commonly named by bindings, 
access to them is controlled by controlling access to the bindings that name 
them.  By exporting the binding naming a class or function, a program has 
effectively exported the class or function.  If the binding is not exported, then 
the class or function is effectively private.

 

*

 

A module definition defines the imports and exports of a module, and may 
specify bindings owned by the module. A complete description of module 
definitions is given on page 369.

 

Defining Module Bindings 3

 

A module consists of a set of bindings.  A binding may be 

 

owned

 

 by a module, 
or a module may 

 

import

 

 the binding from another module by 

 

using

 

 the other 
module.  Modules 

 

export

 

 bindings to make them accessible to other modules.  
Only exported bindings can be imported by other modules.

Within a given module, a name refers to at most one module binding.  It is an 
error to create or import two or more different bindings with the same name in 
a single module. If a name does refer to a binding, the binding is said to be 

 

accessible

 

 from the module. Each binding is owned by exactly one module, but 
it can be accessible from many modules.

Module bindings are created by definitions. 

 

Explicit definitions

 

 are created by 

 

define constant

 

, 

 

define variable

 

, 

 

define generic

 

, 

 

define macro

 

 
and the class name in 

 

define class

 

.  

 

Implicit definitions

 

 are created by 

 

define method 

 

and the slot specifications of 

 

define class

 

.

 

* 

 

This privacy can sometimes be circumvented through certain introspective operations.

 

 

This document was created with FrameMaker 4.0.4
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Libraries

 

Within a library, a module binding may have no explicit definition or it may 
have one explicit definition. It may not have more than one explicit definition. 
If a module binding has no explicit definition, it must have one or more 
implicit definitions. If it does have an explicit definition, it can have zero or 
more implicit definitions.

A binding may be declared by the 

 

create

 

 clause of a module definition. This 
does not define the binding, but instead declares that it is owned by the 
module. Other modules may import the binding from that module. The 
binding must be defined by one of the modules which imports it.

If a binding is not declared by the 

 

create

 

 clause of a module definition, it is 
owned by the module in which its explicit definition appears. If it does not 
have an explicit definition, it is owned by one of the modules in which at least 
one of its implicit definitions appears; the exact owning module cannot be 
determined.

It is an error to reference a name for the purpose of getting or setting its value if 
the name does not designate either a local or module binding in the 
environment where the reference occurs.

 

Libraries 3

 

A library consists of the following parts:

 

■

 

A library definition.  This specifies a name for the library, a set of modules 
which are exported from the library for use by other libraries, and a set of 
modules that are imported from other libraries for use by the library being 
defined. A complete description of library definitions is given on page 374.

 

■

 

The association of source code with the library.  The mechanism by which 
this association is made is controlled by the programming environment and 
is implementation-defined.

 

■

 

The association of executable code with the library.  The mechanism by 
which this association is made is implementation-defined.  The mechanism 
by which the compiler is invoked to produce the executable code is 
implementation-defined.

 

■

 

The export information of the library.  The format of this information and 
the mechanism by which it is associated with the library is 
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implementation-defined.  The export information comprises the information 
required to process the source code of  another library that imports the 
library.

The library export information is the only part of a Dylan library that is 
needed to allow some other library to import it.  A library that exports some 
modules does not have any additional declarations providing information to 
the compiler when it is processing the code that imports those modules.  
Rather, any such information that is needed is obtained in some 
implementation-defined way while processing the source code of the 
exporting library and is retained in the library export information of the 
exporting library.

Exporting a module from a library makes all of the bindings exported by the 
module available for import by modules in other libraries.

Importing a module into a library allows the module to be used by modules 
defined within the library.  This gives the library’s modules access to the 
bindings of the module being imported. 

Importing a module into a library does not allow source records in the 
importing library to be contained in the imported module.

Each implementation must provide a library named 

 

dylan

 

 which exports a 
module named 

 

dylan

 

.  That module must export exactly those bindings 
documented as being part of the Dylan language, and the values of those 
bindings must be as specified by the Dylan language.  The 

 

dylan

 

 library is 
permitted to export additional implementation-defined modules.

Each library contains an implicitly defined module whose name is 

 

dylan-user

 

.  Within this module, all the bindings specified by the Dylan 
language are accessible using their specified names.  Additional 
implementation-dependent bindings may also be accessible from this module.
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Overview 4

 

Dylan provides a number of program control constructs, implementing 
function calls, operators, assignment, conditional execution, iteration, and 
non-local flow of control.

This chapter also describes the multiple-value facility and the rules for order of 
execution of Dylan programs.

 

Function Calls 4

 

General Syntax 4

 

The general syntax for function calls is

 

function

 

(

 

arg1

 

,

 

 

 

arg2

 

,

 

 … 

 

argn

 

)

 

function

 

 has the syntax of an operand and is the function to be called.  The 

 

args

 

 
have the syntax of expressions, and are the arguments to the function. The 

 

function

 

 will often be a named value reference, but it can be any other kind of 
operand as well.

In the following example, the function being called is the value of the binding 

 

average

 

.

 

average(x, y)

 

In the following two examples, the function being called is the value of a 

 

method

 

 statement.  The examples differ only in that the second example puts 
parentheses around the 

 

method

 

 statement, to make the code somewhat more 
readable.

 

method(x) x + 1 end (99)

(method(x) x + 1 end) (99)

 

 

This document was created with FrameMaker 4.0.4
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Function Calls

 

In the following examples, the function being called is the result of another 
function call.  

 

key-test

 

 takes a collection as an argument, and returns a 
predicate function.  The predicate function is then applied to the two keys. The 
following three program fragments will have the same effect.

 

key-test(collection)(key1, key2)

(key-test(collection))(key1, key2)

begin

 let fun = key-test(collection);

 fun(key1, key2);

end

 

Slot Reference 4

 

Dylan provides a shorthand syntax for functions which accept one argument.  
The syntax 

 

argument

 

.

 

function

 

 applies 

 

function

 

 to 

 

argument

 

.  This syntax is 
commonly used for slot reference, to access the 

 

function 

 

 slot of 

 

argument

 

.

Order of execution aside, the following pairs of function calls are equivalent:

 

america.capital

capital(america)

window.position

position(window)

 

Slot reference syntax can be cascaded and is left associative.  Order of execution 
aside, the following pair of expressions are equivalent.  Each returns the origin 
of the root-view of a window.

 

window.root-view.origin

origin(root-view(window))
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Element Reference 4

 

Dylan provides a shorthand syntax for element reference.  The syntax 

 

sequence

 

[

 

i

 

]

 

 is equivalent to the function call 

 

element(

 

sequence

 

, 

 

i

 

)

 

.  The 
syntax 

 

array

 

[

 

i

 

1

 

,

 

 

 

i

 

2

 

,

 

 … 

 

i

 

n

 

]

 

 is equivalent to the function call 

 

aref(

 

array

 

,

 

 

 

i

 

1

 

,

 

 

 

i

 

2

 

,

 

 
… 

 

i

 

n

 

)

 

.

Order of execution aside, the following pairs of expressions are equivalent:

 

*all-windows*[0]

element(*all-windows*, 0)

*tic-tac-toe*[1, 2]

aref(*tic-tac-toe*, 1, 2)

 

The names 

 

element

 

 and 

 

aref

 

 are looked up in the environment of the 
element reference expression.

 

Operators 4

 

Dylan provides a small number of unary and binary operators.  Three of these 
are special operators with explicitly defined syntax and execution rules.  The 
remainder are syntactic shorthand for function calls.

Operators and their operands must be separated by whitespace or parentheses. 
All binary operators are left-associative, except for the assignment operator, 

 

:=

 

, 
which is right-associative.

Each operator that is syntactic shorthand for function call corresponds to a 
binding name, given in the table below.  When an operator is called, the 
corresponding name is looked up in the environment of the call.  (It is not 
looked up in the Dylan module, and will only refer to a binding in the Dylan 
module if that binding has been imported in the current module and has not 
been shadowed by a lexical binding.)

If the name given in the table has the same spelling as the operator, it must be 
escaped with \ to be used as a named value reference. For example, to add a 
method to 

 

+

 

 with 

 

define method

 

, you use 

 

\+

 

.  To use 

 

<

 

 as an argument to 

 

sort

 

, you write 

 

\<

 

.
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Special operators do not correspond to any binding name, and cannot be used 
with any alternate syntax.

With the exception of calls to the three special operators (&, |, and :=), the 
operands of a binary operator call are executed in left to right order.  Special 
operators have their own flow of control rules, described in “Special 
Operators” on page 397.

The operators are listed below in descending order of precedence. Operators 
within a group share the same precedence. When a function call using slot 
reference syntax reference appears as an operands, it has greater precedence 
than any of the binary operators.

 

Table 4-1

 

Operators

 

Operator Unary/Binary Description Name

 

-

 

unary arithmetic negation

 

negative

~

 

unary logical negation

 

~

^

 

binary exponentiation

 

^

*

 

binary multiplication

 

*

/

 

binary division

 

/
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Assignment 4

 

The special operator  

 

:= 

 

is used to set variables to new values and as an 
alternate syntax for calling setter functions and macros.

The assignment operator is described in detail on page 397.

The following examples show the use of 

 

:=

 

 to change the value of a module 
binding.

 

+

 

binary addition

 

+

-

 

binary subtraction

 

-

=

 

binary equality

 

=

== binary identity ==

~= binary non-equality ~=

~== binary non-identity ~==

< binary less than <

> binary greater than >

<= binary less than or equals <=

>= binary greater than or equals >=

& binary logical and {none}

| binary logical or {none}

:= binary assignment {none}

Table 4-1 Operators

Operator Unary/Binary Description Name
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define variable *foo* = 10;

*foo*

 ⇒   10

*foo* := *foo* + 100;

 ⇒   110

*foo*

 ⇒   110

The following examples show the use of := as shorthand for calling a setter 
function. In general, using this syntax to call a function fun is equivalent to 
calling the function fun-setter.

define variable *foo* = vector (10, 6, 8, 5);

element(*foo*, 2)

 ⇒   8

element(*foo*, 2) := "bar"

 ⇒   "bar"

*foo*

 ⇒   #[10, 6, "bar", 5]

The following examples show the use of := as shorthand for calling a setter 
function using slot access notation.

window.position := point(100, 100)

vector.size := 50

The following examples show the use of := as shorthand for calling 
element-setter or aref-setter.

my-vector[2] := #”two”

my-array[1,1] := #”top-left”
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Conditional Execution 4

There are a number of statements and special operators that can be used to 
conditionally execute code.  These are described in detail in Chapter 14, “The 
Built-In Macros and Special Operators.”

True and False 4

For the purposes of conditional execution, there is a single object that counts as 
false, and all other objects count as true.

Table 4-2 Conditional Execution

Macro Description Page

if Executes an implicit body if the value of a 
test is true or an alternate if the test is 
false.

383

unless Executes an implicit body unless the 
value of a test is true.

385

case Executes a number of tests until one is 
true, and then executes an implicit body 
associated with the true test.

385

select Compares a target object to a series of 
potential matches, and executes an 
implicit body associated with the first 
match found.

386

| Returns the value of the first of two 
operands which is true.Returns the value 
of the first of two operands which is true. 
This is a logical or operation.

399

& Executes a second operand and returns its 
values if the value of the first operand is 
true. This is a logical and operation.

400
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The false object is the constant #f.  There is a canonical true object, #t, which 
can be used for clarity of code.  #t and #f are instances of the class 
<boolean>.

Because all values besides #f count as true, the term “true or false”  is not 
equivalent to “#t or #f”.

The special operator ~ is used for logical negation.  If its operand is true, it 
returns #f.  If its operand is #f, it returns #t.

Iteration 4

Iteration is supported through a number of statements, as well as through 
recursive functions.

Iteration Statements 4

The statemens supporting iteration are described in detail in Chapter 14, “The 
Built-In Macros and Special Operators.”

Tail Recursion 4

Implementations are encouraged to optimize tail recursive function calls 
whenever possible. Tail recursion occurs when a function F1 returns the values 

Table 4-3 Iteration Statements

Macro Description Page

while Repeatedly executes a body until a test 
expression is false.

388

until Repeatedly executes a body until a test 
expression is true.

388

for Performs general iteration over a body, 
updating bindings and performing end 
tests on each iteration.

389
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of a call to another function F2. In many cases, this can be used to create loops 
using self-recursive or mutually-recursive functions. (Among the cases which 
cannot be optimized are those in which the return value types of F1 and F2 
differ, requiring the F1 to check the types of the values before returning them.)

The following example uses tail recursion to compute the name of the root 
volume on which a given file system object is stored.

define method root-volume-name (f :: <file-or-directory>)

  if ( root-volume?(f) ) 

    f.name

  else 

    root-volume-name(f.container)

  end if;

end method;

The example above can execute with constant stack size,  regardless of how 
deeply nested the file system hierarchy may be.

Non-Local Exits and Cleanup Clauses 4

Non-local exits allow the direct transfer of control to a previous point in 
program execution.  The normal chain of function returns is aborted.

Cleanup clauses are bodies which are guaranteed to execute, even if the 
program segment of which they are a part is aborted by a non-local exit.

Non-local exits and cleanup clauses are implemented by the block statement.  
A complete description of the block statement is given on page 392.

Multiple Values 4

The execution of an expression can yield one value, more than one value, or no 
values at all.  This capability is called multiple values.
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Multiple values are generated by the function values.  They are received by 
the bindings of let declarations and define constant and define 
variable definitions.

Many statements will return multiple values if the last expression they execute 
returns multiple values.  Similarly, a function will return all the values of the 
last subexpression it executes.

define method return-three-values (a, b, c)
  values(a, b, c)
end method return-three-values;

begin
  let (foo, bar, baz) = return-three-values (1, 2, 3);
  list (foo, bar, baz)
end
  => #(1, 2, 3)

Each expression in the argument list of a function call supplies only one 
argument to the function call. That argument is the first value returned by the 
expression. Additional values returned by the expressions are ignored.

list (return-three-values(1, 2, 3),

      return-three-values(1, 2, 3),

      return-three-values(1, 2, 3))

 ⇒  #(1, 1, 1)

Multiple values can be used to perform parallel binding:

begin

  let x = 10;

  let y = 20;

  let (x, y) = values (y, x);

  list (x, y);

end

 ⇒   #(20, 10)

The following rules apply when matching up an expression which returns 
multiple values with a binding declaration or definition that receives multiple 
values.

■ If there are the same number of bindings and values, the bindings are 
initialized to the corresponding values.
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■ If there are more bindings than there are values, the extra bindings are 
initialized to #f.  (If a binding is typed, #f must be an instance of its type or 
an error is signaled.)

■ If there are more values returned than there are bindings, the excess  values 
are placed in a sequence which is used as the initial value for rest-binding or 
discarded there is no rest-binding.

begin

  let (one #rest nums) = return-three-values(1, 2, 3);

  nums;

end

 ⇒   #(2, 3)

■ If there is a rest-binding but there are no excess values, rest-binding is 
initialized to an empty sequence.

Order of Execution 4

Order of execution is defined for the constituents within a body. With some 
exceptions noted below, this execution order is left-to-right.

Definitions form the overall structure of a program and are not said to execute. 
In particular, module bindings are not created in any order, but all exist when 
program execution commences. To the extent that these bindings must be 
initialized by the values of some expressions which cannot be analyzed at 
compile time, references to the bindings are constrained by the execution order 
of the expressions within the surrounding body.

Dylan implementations are encouraged to allow forward references to module 
bindings whenever possible.

The order of execution of the components of a call to a user-defined macro is 
determined by the macro.

Execution Order Within Expressions 4

In general, execution within an expression proceeds left-to-right. The chief 
exception to this rule is the assignment operator, which is executed right-to-left.
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■ In a standard function call, the function operand is executed first, followed 
by the argument expressions. (Remember, the function need not be a named 
value reference, but can be a more complex operand). After the function 
operand has been executed and each of the argument expressions has been 
executed, the function is applied to the arguments.

one(two, three, four)

■ In slot references, the object operand is executed first, followed by the 
function named value reference. Then the function is applied to the object.

one.two

■ In element references, the collection operand is executed first, followed by 
the key expressions in order. Then the element access is performed. The 
execution time of the binding element or aref is unspecified.

one[two, three]

■ In an operator call, the operands are executed left-to-right. The execution 
time of the binding specified by the operand (e.g. + or *)is unspecified.

one + two - three

■ In an assignment to a place which represents a function call, the order of 
execution is largely the same as it would be in a call to the corresponding 
setter function. The new-value expression is executed first, followed by the 
argument expressions. The execution time of the binding named by the 
setter function is undefined.

function-setter(one, two, three)

function(two, three) := one

slot-setter(one, two)

two.slot := one

element-setter(one, two, three)

two[three] := one

aref-setter(one, two, three, four)

two[three, four] := one
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Types and Classes 5

 

Overview 5

 

The Dylan type system is used to categorize all objects.  In concert with generic 
functions, types determine the behavior of objects.  When an object is passed as 
an argument to a generic function, the generic function looks at the type of the 
object to determine which method should be run.

Dylan supports several kinds of types, including classes, singletons, union 
types, and limited types.

 

■

 

Classes are used to define the structure, inheritance, and initialization of all 
objects.  An object can be an instance of any number of types, but will 
always be a direct instance of exactly one class.

 

■

 

Singletons are used to indicate individual objects.

 

■

 

Union types are used to indicate objects which are instances of one of a set of 
specified types.

 

■

 

Limited types are used to indicate objects which are instances of another 
type and have additional constraints.  There are several kinds of limited 
types. 

All types are first-class objects, and are general instances of 

 

<type>

 

.  
Implementations may add additional kinds of types.  The language does not 
define any way for programmers to define new subclasses of 

 

<type>

 

.

 

The Type Protocol 5

 

The type protocol comprises the following:

 

■

 

All types may be used as specializers for method parameters, bindings, and 
slots.

 

■

 

instance?(

 

object

 

, 

 

type

 

)

 

 tests type membership.

 

■

 

subtype?(

 

type1

 

, 

 

type2

 

)

 

 tests type inclusion.

 

■

 

make(

 

type

 

 …)

 

 makes an instance.  This operation is only supported if the 
type is instantiable.

 

 

This document was created with FrameMaker 4.0.4
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The Type Protocol

 

■

 

Type objects are immutable.

 

■

 

If two type objects are equivalent and are not classes, it is unspecified 
whether they are 

 

==

 

.

The following is an informal description of type relationships: The function 

 

subtype?

 

 defines a partial ordering of all types.  Type 

 

t

 

1

 

 is a subtype of type 

 

t

 

2

 

 
(i.e. 

 

subtype?(

 

t

 

1

 

, 

 

t

 

2

 

)

 

 is true) if it is impossible to encounter an object that is 
an instance of 

 

t

 

1

 

 but not an instance of 

 

t

 

2

 

.  It follows that every type is a 
subtype of itself.  Two types 

 

t

 

1

 

 and 

 

t

 

2

 

 are said to be 

 

equivalent types

 

 if 

 

subtype?(

 

t

 

1

 

, 

 

t

 

2

 

)

 

 and 

 

subtype?(

 

t

 

2

 

, 

 

t

 

1

 

)

 

 are both true.  

 

t

 

1

 

 is said to be a 

 

proper subtype

 

 of 

 

t

 

2

 

 if 

 

t

 

1

 

 is a subtype of 

 

t

 

2

 

 and 

 

t

 

2

 

 is not a subtype of 

 

t

 

1

 

.

 

subtype?

 

 on classes is defined by inheritance.  A class is a subtype of itself 
and of its general superclasses.

 

subtype?

 

 on singletons is defined by object type and identity.  If 

 

x

 

 is an object 
and 

 

t

 

 is a type, 

 

subtype?(singleton(

 

x

 

), 

 

t

 

)

 

 will be true only if 

 

instance?(

 

x

 

, 

 

t

 

)

 

 is true.

 

subtype?

 

 rules for union types are given in “Union Types” on page 71. 

 

subtype?

 

 rules for limited integer types are given in “Limited Integer Types” 
on page 72. 

 

subtype?

 

 rules for limited collection types are given in “Limited 
Collection Types” on page 124.

 

<object>

 

 is the root of the type hierarchy. All objects are instances of 

 

<object>

 

, and all types are subtypes of 

 

<object>

 

.

A number of operations on types are described in “Reflective Operations on 
Types” on page 331.

 

Base Types and Pseudosubtypes 5

 

Every type has a 

 

base type

 

.  The base type for a class is the class itself.  The 
base type of a singleton is the singleton  itself.  The base type of a union is the 
union of the base types of its  component types.  The base type of a limited type 

 

limited(

 

C

 

,

 

 …

 

)

 

 is 

 

C

 

.

The type 

 

t

 

1

 

 is a 

 

pseudosubtype

 

 of the type 

 

t

 

2

 

 if 

 

t

 

1

 

 is a subtype of the base type 
of 

 

t

 

2

 

 and 

 

t

 

1

 

 and 

 

t

 

2

 

 are not disjoint.

Note that

 

 t

 

1

 

 being a subtype of t2 implies that t1 is a pseudosubtype of t2, but t1 
being a pseudosubtype of t2 does not imply that t1 is a subtype of t2.  Note also 
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that if t2 is not a limited type or some other non-standard type, then 
pseudosubtype is the same as subtype.

Base types and pseudosubtypes are used in the rules for sealing, described in 
Chapter 9, “Sealing.”

Type Disjointness 5

Informally, two types are disjoint if there can be no object that is an instance of 
both types.  Formally, the disjointness of types is specified by the following set 
of rules. (Some of these rules reference definitions given in “Limited Integer 
Types” on page 72,  “Element Types” on page 122 and “Limited Collection 
Types” on page 124.)

■ Two classes are disjoint if they have no common subclasses.

■ A union type is disjoint from another type if both of the union type's 
component types are disjoint from that other type.

■ A singleton type is disjoint from another type if the singleton’s object is not 
an instance of that other type.

■ A limited collection type is disjoint from a class if their base types are 
disjoint, or the class is a subclass of <collection> and its element type is 
definite and not equivalent to the limited collection type's element type, or 
the class is a subclass of <collection> and its element type is indefinite 
and not a supertype of the limited collection type's element type.

■ A limited collection type is disjoint from a limited integer type. (Because the 
classes <collection> and <integer> are disjoint.)

■ Two limited collection types are disjoint if their base types are disjoint, or 
their element types are not equivalent, or their sizes are not compatible.  
Two sizes are compatible if either is #f, or they are = to each other, or one is 
a sequence of integers and the other is the product of those integers.

■ Two limited integer types are disjoint if the minimum value of one is greater 
than the maximum value for the other.

■ A limited integer type is disjoint from a class if their base types are disjoint 
or the class is a subclass of <integer> whose range is disjoint from the 
limited integer type’s range.
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Classes 5

Classes are used to define the inheritance, structure, and initialization of objects.

Every object is a direct instance of exactly one class, and a general instance of  
the general superclasses of that class.

A class determines which slots its instances have.  Slots are the local storage 
available within instances.  They are used to store the state of objects.

Classes determine how their instances are initialized by using the initialization 
protocol.

Features of Classes 5

There are four features of classes, each of which is independent of the others.

■ A class can be abstract or concrete. If the class is concrete, it can have direct 
instances. If it is abstract, it cannot have direct instances, but only indirect 
instances.

■ A class can be instantiable or uninstantiable. If the class is instantiable, it 
can be used as the first argument to make. If it is uninstantiable, it cannot be 
used as the first argument to make.

■ A class can be primary or free. This controls how a class can be used for 
multiple inheritance. For a full description of this feature, see “Declaring 
Characteristics of Classes” on page 132.

■ A class can be sealed or open. This controls whether a class can be 
subclassed outside the library where it is defined. For a full description of 
this feature, see “Declaring Characteristics of Classes” on page 132.

Creating Classes 5

New classes may be created by calling make on <class>, or with the 
definition define class. In most programs the latter is more commonly 
used.
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When a class is created with make, it is instantiated and returned just like any 
other object. The options available when creating a class with make are 
described on page 186.

When a class is created with define class it is used to initialize a new 
module binding.  define class allows the specification of superclasses, 
slots, initialization behavior, and options related to sealing.  The complete 
syntax of define class is given on page 366.

The following simple class definition creates a class named by the module 
binding <new>.  The class inherits from <object>, and does not specify any 
slots.

define class <new> (<object>)

end class <new>;

The following class definition illustrates the creation of a class with multiple 
superclasses.  Again, there are no slots.

define class <color-window> (<palette>, <window>)

end class <color-window>;

Class Inheritance 5

When a class is created, its direct superclasses are specified. The new class 
directly inherits from these classes; it is a direct subclass of each of these 
classes. There can be no duplicates in the direct superclasses of a class.

The subclass relationship is transitive.  If a class C is a direct subclass of C1,  C1 
is a direct subclass of C2, and C2 is a direct subclass of C3, then C is an indirect 
subclass of C2 and C3.  A general subclass is a direct or indirect subclass.

Inheritance cannot be circular.  A class cannot be its own general subclass.

A class is a subtype of each of its general superclasses.

Every class is a general subclass of <object>.
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Computing the Class Precedence List 5

The definition of a class specifies a total ordering on that class and its direct 
superclasses.  This ordering is called the local precedence order.  In the local 
precedence order, the class precedes its direct superclasses, and each direct 
superclass precedes all other direct superclasses following it in the sequence of 
direct superclasses given in the class definition.

The class precedence list for a class C is a total ordering on C and its 
superclasses that is consistent with the local precedence orders of each of C and 
its superclasses as well as with the ordering in the class precedence list of each 
of its superclasses.

Sometimes there are several possible total orderings on C and its superclasses 
that are consistent with the local precedence orders for each of C and its 
superclasses.  Dylan uses a deterministic algorithm to compute the class 
precedence list, which chooses one of the possible total orderings.

Sometimes there is no possible total ordering on C and its superclasses that is 
consistent with the local precedence orders for each of C and its superclasses.  
In this case, the class precedence list cannot be computed, and an error is 
signaled.

To compute the class precedence list for class C:

■ Let S be the set of class C and all of its superclasses.

■ Let C1…Cn be the members of S.

■ Let D1…Dm be the direct superclasses of C.

■ Let L be the class precedence list of C.

■ Let CPL1…CPLm be, respectively, the class precedence lists of D1…Dm.

■ A class C1 is said to precede class C2 if C1 must appear before C2 in L.

 

n Local precedence order constraint
Class C precedes every D in D1…Dm.  Every Di in D1…Dm precedes every 
Dj, such that i < j.

 

n Monotonicity constraint
For every class precedence list K in CPL1…CPLm, every class in K 
precedes all the classes which occur later in K.
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■ To compute L, pick a class N in S such that there are no classes in S that 
precede N.  If there is no such class, the class C is inconsistent and its 
creation is not permitted.

■ If there are several classes from S with no predecessors, select the one that 
has a direct subclass rightmost in the partial class precedence list computed 
so far.  (In more precise terms, let {N1,…Nm}, m>=2, be the classes from S 
with no predecessors.  Let (C1,…,Cn), n>=1, be the partial class precedence 
list computed so far.  C1 is the most specific class, and Cn is the least specific. 
Let 1<=j<=n be the largest number such that there exists an i where 1<=i<=m 
and Ni is a direct superclass of Cj.  Select Ni as N.)

■ Remove N from S.  Add N to the end of L.  Continue adding classes from S 
to L, as above, until S is empty.

This algorithm can be implemented with the following Dylan program:

define method compute-all-superclasses (c :: <class>)

  let local-precedence-order-constraints

    = add!(compute-constraints(c.direct-superclasses),

           list(c, first(c.direct-superclasses)));

  let monotonicity-constraints

    = reduce1(concatenate,

              map(compose(compute-constraints, all-superclasses),

                  c.direct-superclasses));

  let constraints

    =

remove-duplicates(concatenate(local-precedence-order-constraints,

                                    monotonicity-constraints),

                        test: \=);

  let all-supers

    = reduce(union, list(c),

             map(all-superclasses, c.direct-superclasses));

  topological-sort(all-supers, constraints, tie-breaker-rule)

end method compute-all-superclasses;

// Given an ordered list, pair up adjacent elements to give the  

// constraint set for the ordering.
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define method compute-constraints (l :: <list>)

  if (empty?(l) | empty?(l.tail))

    #()

  else

    pair(list(l.first, l.second), compute-constraints(l.tail))

  end

end method compute-constraints;

define method topological-sort

    (elements :: <list>,

     constraints :: <list>,

     tie-breaker :: <function>)

  local method sort (remaining-constraints,

                     remaining-elements,

                       result)

          local method next-minimal-elements

                            (remaining-elements :: <list>)

                  choose(method (class)

                           ~member?(class,

                                    remaining-constraints,

                                       test: method (a, b)

                                                  a == b.second

                                                 end method)

                              end method,

                           remaining-elements)

                end method next-minimal-elements;

          let minimal-elements =

                          

next-minimal-elements(remaining-elements);

          if (empty?(minimal-elements))

            if (empty?(remaining-elements))

              result

            else

              error("Inconsistent precedence graph ~S.", 

                      remaining-elements)

            end if
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          else

            let choice =

                if (empty?(minimal-elements.tail))

                  minimal-elements.head

                else

                  tie-breaker(minimal-elements, result)

                end if;

            sort(remove(remaining-constraints,

                        choice,

                          test: method (a, b) member?(b, a) end),

                 remove(remaining-elements, choice),

                 concatenate(result, list(choice)))

          end if

        end method sort;

  sort(constraints, elements, #())

end method topological-sort;

define method tie-breaker-rule (minimal-elements, cpl-so-far)

  block (return)

    for (cpl-constituent in cpl-so-far.reverse)

      let supers = cpl-constituent.direct-superclasses;

      let common = intersection(minimal-elements, supers);

      unless (empty?(common))

        return(common.head)

      end unless;

    end for

  end block

end method tie-breaker-rule;

Slots 5

Slots are the interface to information about instances. They correspond to the 
fields or instance variables of other object-oriented programming languages.  
By default, each instance of the class has private storage for each slot, so one 
instance can have one value in the slot and another instance can have another 
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value.  Some slots are shared among instances, as described in “Slot 
Allocation” on page 59.

All slot access is performed by function calls.* The method that returns the 
value of a slot is called the getter method, and the method that sets the value of 
a slot is called the setter method.  The getter and setter methods are added to 
generic functions.  When defining a class, you specify slots by specifying the 
generic functions to which the getter and setter methods should be added.

For example, the class definition for <point> might be

define class <point> (<object>)

  slot horizontal;

  slot vertical;

end class;

This definition indicates that instances of <point> should have two slots, 
horizontal and vertical.  The getter method for the first slot is added to 
the generic function horizontal, and the getter method for the second slot is 
added to the generic function vertical.  The setter method for the first slot is 
added to the generic function horizontal-setter, while the setter method 
for the second slot is added to the generic function vertical-setter.

The following two code fragments are equivalent.  Each returns the horizontal 
coordinate of a point:

horizontal(a-point)

a-point.horizontal;

The following three code fragments each set the horizontal coordinate of a 
point to 10:

horizontal-setter(10, my-point)

horizontal(my-point) := 10;

my-point.horizontal := 10;

A slot setter method returns its new value argument.

* This is in contrast to some other languages where slots are accessed through named value ref-
erences.
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Slot Inheritance 5

Slots are inherited from superclasses.

The collection of all the getter and setter generic functions for slots specified in 
a class or inherited from its superclasses must not contain any duplicates.

If a superclass is inherited through multiple paths, its slots are inherited once.  
For example, if class A has direct superclasses B and C, and both B and C have 
D as a direct superclass, A inherits from D both through B and through C, but 
the slots defined by D are only counted once.  Because of this, multiple 
inheritance does not by itself create any duplicates among the getters and 
setters.

Note that two classes which specify a slot with the same getter or setter generic 
function are disjoint —they can never have a common subclass and no object 
can be an instance of both classes.

Slot Specifications 5

A slot specification describes a slot.

A slot specification must include the name of the getter of the slot (i.e. the name 
of the generic function to which the getter method will be added).  This is how 
slots are identified.  The specification may optionally include the name of the 
setter method.  If it does not, a default name is generated by appending 
“-setter” to the name of the getter.

A number of other options are available in slot specifications:

■ An initial value for the slot may be specified with an init specification.

■ An init-keyword may be specified.  This allows a value for the slot to be 
supplied when an instance is created.

■ Slot allocation may be specified.  This controls whether storage for the slot is 
allocated in each instance, or some other way. 

■ A slot may be specifed as constant.  There will be no setter for the slot.

■ A type may be specified.  The value of the slot will be constrained to be an 
instance of that type.
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■ A sealing directive may be specified. See “Define Inert Domain” on page 133 
for a complete description of the sealing constraints imposed by this 
directive.

For the complete syntax of slot specifications, see the reference entry of 
define class on page 366.

The following example defines a class with three slots, using a variety of slot 
options. 

define class <window> (<view>)

  slot title :: <string> = “untitled”;

  slot position :: <point>, init-keyword: window-position:;

  slot color, init-keyword: color:, init-value: $blue-color;

end class <window>;

Init Specifications 5

An init specification provides a default initial value for a slot. It can do this 
directly (if it is an init specification of a slot) or it can do it indirectly by 
providing a default value for an init-keyword (if it is an init specification of an 
init-keyword).

There are three kinds of init specifications:

■ An init value specifies a value that is used to initialize the slot. Each time the 
slot needs to be initialized, the identical value is used.

■ An init function specifies a function to be called to generate a value that is 
used to initialize the slot. Each time the slot needs to be initialized, the 
function is called and its value is used. This allows slots to be initialized to 
fresh values, or to values computed from the current program state.

■ An init expression specifies an expression to be executed to generate a value 
that is used to initialize the slot. Each time the slot needs to be initialized, the 
expression is executed and its value is used. This allows slots to be 
initialized to fresh values, or to values computed from the current program 
state.

Only one init specification may be supplied in a given slot specification, 
inherited slot specification, or initialization argument specification.

In general, an init-function will only be called and an init-expression will only be 
executed if its value will actually be used.
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Init Keywords 5

An init-keyword allows the value of a slot to be specified by a keyword 
argument in the call to make when an instance is created. An init-keyword may 
be optional or required.

When the value of a slot is provided by a keyword in a call to make, it is called 
an initialization argument.

If an init-keyword is specified, the slot is said to be keyword initializable.

Slot Allocation 5

Options for slot allocation include instance, class, each-subclass, and 
virtual.

instance allocation specifies that each instance gets its own storage for the 
slot.  This is the default.

class allocation specifies there is only one storage location used by all the 
general instances of the class.  All the instances share a single value for the slot.  
If the value is changed in one instance, all the instances see the new value.

each-subclass allocation specifies that the class gets one storage location for 
the slot, to be used by all the direct instances of the class.  In addition, every 
subclass of the class gets a storage location for the slot, for use by its direct 
instances.

virtual allocation specifies that no storage will be allocated for the slot.  If 
allocation is virtual, then it is up to the programmer to define methods on 
the getter and setter generic functions to retrieve and store the value of the 
slot.  Dylan will ensure the existence of generic functions for any specified 
getter and setter but will not add any methods to them.   A virtual slot cannot 
specify an init specification or init-keyword. Any required initialization for the 
slot must be performed in a method on initialize.

Constant Slots 5

Specifying a slot as constant is equivalent to specifying setter: #f.  If the 
constant adjective is supplied, it is an error to supply an explicit value for the 
setter: keyword in the slot specification.  Such slots can only be given values 
at instance creation time (with an init specification or init-keyword).
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define class <person> (<being>)

  constant slot birthplace, required-init-keyword: birthplace:;

end class <person>;

define class <astronaut> (<person>)

  constant class slot employer = #"NASA";

end class <astronaut>;

define class <hair-trigger> (<object>)

  constant slot error-if-touched;

end class <hair-trigger>;

Specializing Slots 5

Slots may be specialized by declaring the type of the slot when a class is 
created.  Specializing a slot has the following effects on the getter and setter 
methods of the slot:

■ The automatically defined slot getter method has its single parameter 
specialized on the class that specified the slot and has a value type 
declaration that indicates that it returns a single value of the type specified 
for the slot.

■ The automatically defined slot setter method has its instance argument 
specialized on the class that specified the slot, has its new-value argument 
specialized on the type specified for the slot, and has a value type 
declaration that indicates that it returns a single value of the type specified 
for the slot.

The following example demonstrates how an explicitly defined setter method 
can be used to coerce a slot value of the wrong type (<sequence>) to the right 
type (<simple-object-vector>).

   define class <person> (<object>)

     slot friends :: <simple-object-vector>, init-value: #[];

   end class;
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   define method friends-setter (f :: <sequence>, p :: <person>)

     p.friends := as(<simple-object-vector>, f);

     f;             // return new-value argument

   end method

   tom.friends := list(dick, harry);

The assignment expression invokes the method with the new-value parameter 
specialized on <sequence>, which reinvokes the function with a new-value 
argument that is a <simple-object-vector>, which invokes the slot setter 
method.

Overriding Slots in Subclasses 5

Some slot options related to instance initialization can be overridden in 
subclasses.  The mechanisms for doing this are described in “Inherited Slot 
Specifications” on page 66 and in “Initialization Argument Specifications” on 
page 67.

Using Slots 5

Because slots are accessed through methods in generic functions, they appear 
to clients just like any other methods in generic functions. It is possible for a 
value to be stored in a slot in instances of one class, but computed from 
auxiliary values by instances another class.  It is possible to filter the value of a 
slot when it is retrieved or stored.  In all of these cases, the interface to the 
value is a function call, thus hiding the implementation details from clients.

In the following example, the class <view> stores position directly, while 
<displaced-view> performs a transformation on the value of the slot when 
storing or retrieving it.

define class <view> (<object>)

  instance slot position;

end class;

define class <displaced-view> (<view>)

end class;
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define method position (v :: <displaced-view>)

  // call the  inherited method (the raw slot getter)

  // and transform the result

  displace-transform (next-method (v));

end method;

define method position-setter (new-position,

                               v :: <displaced-view>)

  // call the inherited method (the raw slot setter)

  // on the result of untransforming the position

  next-method (displace-untransform (new-position, v);

  new-position;  // return the new position

end method;

In other situations, a programmer will want storage in an instance for a slot 
value, but will want to perform some auxiliary action whenever the slot is 
accessed.  In this case, the programmer should define two slots:  an instance 
slot to provide the storage and a virtual slot to provide the interface.  In 
general, only the virtual slot will be documented.  The instance slot will be an 
internal implementation used by the virtual slot for storage.  An example of 
such use would be a slot that caches a value.

define class <shape> (<view>)

  virtual slot image;

  instance slot cached-image, init-value: #f;

  ...

end class;

define method image (shape :: <shape>)

  cached-image (shape)

    | (cached-image (shape) := compute-image (shape));

end method;

define method image-setter (new-image, shape :: <shape>)

  cached-image (shape) := new-image;

end method;
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Instance Creation and Initialization 5

The creation and initialization of instances is controlled by the generic 
functions initialize and  make, using initialization information supplied by 
the class definition and by keyword arguments in the call to make. Much of this 
behavior is supplied by the default make method defined on <class>.

Overview 5

Instance creation and initialization proceeds through the following steps:

■ The program calls make specifying a class and a set of keyword arguments.

■ Optionally, the default make method may be shadowed by a user-supplied 
method specialized with a singleton specializer.  This enables the user 
method to get at all the arguments to make, and to provide actual 
instantiation and initializations based on them. For example, a singleton 
method on an abstract class can reinvoke make on a concrete subclass of the 
abstract class, passing along the same or augmented initialization arguments.

■ The default make method examines its keyword arguments, which are 
known as the  supplied initialization arguments.   It then produces a set of 
defaulted initialization arguments by augmenting the supplied 
initialization arguments  with any additional initialization arguments for 
which default values are defined by the class  or any of its superclasses.
If the supplied initialization arguments contains duplicate keywords, make 
will use the leftmost occurance.  This is consistent with keyword argument 
conventions used in function calls.

■ The default make method signals an error if any required init-keyword is 
absent from the defaulted initialization arguments, or if any of the defaulted 
initialization arguments are not valid for initialization of that class.  An 
initialization argument is valid if  it is specified as an init-keyword in a slot 
specification or initialization argument specification, or if it is permitted by 
one or more of the initialize methods applicable to an instance of the 
class.

■ The default make method allocates an instance and initializes all the slots for 
which it can provide values, as follows
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n If the slot is keyword initializable and its keyword is present in the 
defaulted initialization arguments, then the slot is initialized from the 
defaulted initialization arguments.

 

n If the slot is not initialized by a keyword but has an init specification, it is 
initialized from the init specification.

 

n In either case, an error of type <type-error> is signaled if the value is 
not of the type declared for the slot.

■ The default make method then calls initialize on the initialized instance 
and the defaulted initialization arguments.  Methods on initialize can access 
these arguments by accepting them as keyword parameters or in a rest 
parameter.  If they are accepted in a rest parameter and the defaulted 
initialization arguments contained duplicate keywords, it is undefined 
whether any entries other than the leftmost for that keyword will be present.

■ Each initialize method typically calls next-method, and then performs 
its own initializations.  (Note that it won’t have to initialize slots that were 
initialized by the default method on make.)

■ The default make method ignores the value of the call to initialize and 
returns the instance.

The values of virtual slots are not automatically initialized when a new 
instance is created.  The programmer must perform any necessary 
initialization.  This would usually be done inside a method on initialize.  
Because the values of virtual slots are often computed from other values at 
run-time, many virtual slots will not require any explicit initialization.

Additional Behavior of Make and Initialize 5

The object returned by make is guaranteed to be a general instance of the first 
argument to make, but not necessarily a direct instance.  This liberality allows 
make to be called on an abstract class;  it can instantiate and return a direct 
instance of one of the concrete subclasses of the abstract class.

define abstract class <dog> (<object>)

end class

define class <yorkshire-terrier> (<dog>)

end class
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define method make (the-class == <dog>, #rest init-args, #key)

  apply(make, <yorkshire-terrier>, init-args)

end

make(<dog>)

⇒   {instance of <yorkshire-terrier>}

make is not required to return a newly allocated instance.  It may return a 
previously created instance if that is appropriate.  If a new instance is allocated, 
make will call initialize on the instance before returning it.

The make method on <class> returns a newly allocated direct instance of its 
first argument.

Programmers may customize make for particular classes by defining methods 
specialized on singletons of classes.  These methods may reinvoke make on a 
subtype of the class, or they may obtain the default make behavior by calling 
next-method.

The default make method signals an error if its first argument is an abstract 
class.  An instantiable abstract class must override this method with its own 
method for make.

Initialization of Class Allocated Slots 5

The initalization of slots with allocation class or each-subclass is performed in 
the following way:

■ If the slot is not keyword initializable and the class definition does not 
include an init specification for the slot, the slot remains uninitialized until it 
is explicitly assigned by the program.

■ If the slot is not keyword initializable and the class definition does include 
an init specification for the slot, the slot is initialized from the init 
specification before or during the creation of the first instance of the class.

■ If the slot is keyword-initializable and the class definition also includes an 
init specification for the slot, the slot may be initialized or assigned by the 
default method of make whenever an instance is created, as follows:

 

n If the corresponding initialization argument is absent from the defaulted 
initialization arguments of the call to make and the slot has not yet been 
initialized, then the slot is initialized from the init specification. If the slot 
has already been initialized, no action is taken.
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n If the corresponding initialization argument is present in the defaulted 
initialization arguments of the call to make, then the slot is set to the value 
of that initialization argument, regardless of whether the slot was 
previously initialized.

Testing the Initialization of a Slot 5

A program can test to see whether a slot has been initialized, using the 
slot-initialized? function, described on page 248.  There is no portable 
mechanism for resetting a slot to the uninitialized state once it has been 
initialized.

To support the slot-initialized? protocol in a virtual slot, programmers 
must define a method for slot-initialized? that specializes on the getter 
of the slot and the class.

Inherited Slot Specifications 5

An inherited slot specification is used to provide an init specification for a slot 
inherited from a superclass.  It can add an init specification if one was not 
already present, or it can override an existing an init specification.

Inherited slot specifications identify the slot to be modified by the getter name.  
The inherited slot specification is only allowed if the class does indeed inherit a 
slot with that getter.

(An inherited slot specification is not required to include an init specification.  
If it does not, its only purpose is to ensure that the slot is present in a 
superclass.  Because init specifications are not allowed for virtual slots, this is 
the only valid form of inherited slot specification for virtual slots.)

If an inherited slot specification supplies an init specification, it overrides any 
init specification inherited from a superclass.  This allows the init specification 
of an inherited slot to be replaced in a subclass, thereby changing the default 
initial value of the slot.

define class <animal> (<object>)

  slot n-legs, init-value: 4;

end class;
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define class <spider> (<animal>)

  inherited slot n-legs, init-value: 8;

end class;

Initialization Argument Specifications 5

Initialization argument specifications provide options for the handling of 
initialization arguments.  They appear in define class forms, and have a 
syntax similar to that of slot specifications.

Initialization argument specifications allow the type of an initialization 
argument to be restricted, they allow an initialization argument to be declared 
to be required, and they allow the specification of a default value for an 
initialization argument.

Note that an initialization argument will only be used if it is specified to be the 
init-keyword of a slot, or if it is used as a keyword argument in an applicable 
method on initialize.  An initialization argument specification can supply 
a default value for an initialization argument, and it can restrict the type of the 
argument or make it required, but it does not by itself cause the argument to be 
used when initializing an instance.

There are two kinds of initialization argument specifications:  required 
initialization argument specifications, and optional initialization argument 
specifications.

A required initialization argument specification asserts that the initialization 
argument must be present in the defaulted initialization arguments.  The 
default make method will signal an error if no such initialization argument is 
present.

An optional initialization argument specification can be used to specify a 
default value for the initialization argument, using an init specification.  When 
a call to make does not specify the initialization argument, the default make 
method will add it to the defaulted initialization arguments with the value of 
the init specification.

The type argument has the same meaning in both kinds of initialization 
argument specification:  it restricts the type of that initialization argument.  
Note that this is not the same thing as restricting the type of the slot.
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The following example shows how initialization argument specifications can be 
used to override the behavior of a superclass:

define class <person> (<object>)

  slot favorite-beverage, init-value: #"milk",

                    init-keyword: favorite-beverage:;

  slot name required-init-keyword: name:;

end class <person>;

define class <astronaut> (<person>)

  keyword favorite-beverage: init-value: #"tang";

  keyword name: init-value: "Bud";

end class <astronaut>;

In this example, thet <astronaut> class provides default values for the 
favorite-beverage: and name: init-keywords.  In addition to indirectly 
supplying default values for these slots, this also has the effect of making the 
name: argument optional in calls to make on <astronaut>.  If the call to 
make does not specify a name:, the name: will be added to the defaulted 
initialization arguments by the default make method before the defaulted 
initialization arguments are checked for completeness.

More than one keyword initializable slot may be initialized from the same 
initialization argument (that is, more than one keyword initializable slot may 
specify the same init-keyword).  However, an error is signaled if a single 
define-class form has more than one initialization argument specification 
for the same keyword.  An error will also be signaled if a single 
define-class form has a keyword initializable slot which includes an init 
specification and also includes an initialization argument specification for the 
same keyword that is either required or provides a default value.  These error 
situations are all indications of code that can never be reached.

Initialization Argument Inheritance 5

The inheritance of initialization argument specifications is defined as follows.

■ A slot specification which supplies an init-keyword K by using 
required-init-keyword: is treated as if the initialization argument 
specification required keyword K had been specified in the class 
definition.
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■ A slot specification which supplies both an init-keyword and also an init 
specification is not equivalent to an initialization argument specification 
which includes both the init-keyword and an init specification.  In the 
former case the init specification is used to default the value of the slot 
directly, but does not affect the defaulted initialization arguments; in the 
latter case the init specification is used to default the value of the slot 
indirectly, by affecting the defaulted initialization arguments.

■ If the initialization argument is being specified for the first time (it is not 
inherited from any superclass) there are three factors to consider:

 

n The type: argument, which defaults to <object>, specifies the required 
type of the initialization argument. (This does not specify the type of the 
slot.)

 

n If the initialization argument is specified with required keyword then 
it is required, otherwise it is optional.

 

n If the initialization argument is specified with keyword, then it can 
provide an init specification which is used by the default make method to 
provide a default value for the initialization argument in the defaulted 
initialization arguments.

■ If an initialization argument specification is being specified for an 
initialization argument which is inherited from a single superclass, the 
following factors hold:

 

n The type must be a subtype of the type of the inherited initialization 
argument. This implies that the type must be specified unless the type of 
the inherited initialization argument is <object>.

 

n The initialization argument is required if the overriding initialization 
argument specification uses required keyword, or if the inherited 
initialization argument specification is required and the overriding 
initialization argument specification does not provide an init 
specification.  When the the overriding initialization argument 
specification uses required keyword, any init specification in the 
inherited initialization argument specification is discarded.  This means 
that a subclass can make an initialization argument used by a superclass 
become required; it can also make a required initialization argument 
become optional by specifying a default value for it.

 

n Otherwise, the initialization argument is optional.  If the overriding 
specification provides an init specification, then that is used to compute 
the defaulted initialization argument when the class is instantiated.  
Otherwise, the inherited initial value specification is used.
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■ When an initialization argument specification is being inherited from 
multiple superclasses, if the superclasses have exactly the same definition 
for the initialization argument, then that definition can simply be inherited.  
If the definitions differ, then the class which combines these other classes 
must provide an initialization argument specification which is compatible 
with all of the inherited ones, as described above.

Singletons 5

Singleton types are used to indicate individual objects.  When determining 
whether a singleton specializer matches a given object, the object must be == to 
the object used to create the singleton.

A singleton for an object is created by passing the object to the function 
singleton, or by calling the function make on the class <singleton>.

Singleton methods are considered more specific than methods defined on an 
object’s class.  Singletons are the most specific specializer.

define method double (thing :: singleton(#”cup”))

  #"pint"

end method

double (#"cup")

 ⇒   #"pint"

Dylan provides a concise syntax for singletons used as method specializers.  
The folowing definition is equivalent to the one above; it generates a call to the 
binding of singleton in the current lexical environment.

define method double (thing == #"cup")

  #"pint"

end method

double (#"cup")

 ⇒   #"pint"
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Union Types 5

Union types represent the union of the instances of two other types.   Union 
types are created with the function type-union.  They are not classes.

Union types are useful as slot specializers, and describe the return types of 
many common functions.  For example, the return type of the collection 
method on size could be expressed as type-union(<integer>, 
singleton(#f)).

define constant <green-thing> = type-union(<frog>, <broccoli>);

define constant kermit = make(<frog>);

define method red? (x :: <green-thing>)

  #f

end method;

red?(kermit)

  ⇒   #f

The following rules govern subtype? and instance? for union types.

Given

■ x is an object.

■ s1…sm and t1…tn are non-union types.

■ The notation type-union*(t1…tn) stands for any arrangement of nested 
calls to type-union, where none of the arguments is a subtype of any 
other, and none of the arguments forms an exhaustive partition of any other 
type.

Then

type-union(t1, t1) is type equivalent to t1

type-union(t1, t2) is type equivalent to type-union(t2, t1)

type-union(t1, type-union(t2, t3)) is type equivalent to 
type-union(type-union(t1, t2), t3)
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type-union(t1, t2) is type equivalent to t2 when subtype?(t1, t2)

instance?(x, type-union*(t1…tn)) will be true if and only if 
instance?(x, t) is true for some t in t1…tn.

subtype?(type-union*(t1…tn), s1) will be true if and only if 
subtype?(t, s1) is true for every t in t1…tn.

subtype?(s1, type-union*(t1…tn)) will be true if and only if 
subtype?(s1, t) is true for some t in t1…tn.

subtype?(type-union*(s1…sm) type-union*(t1…tn)) will be true if 
and only if every s in s1…sm is a subtype of some t in t1…tn.

Limited Types 5

Limited types are subtypes of classes constrained by additional criteria.  
Limited types are created with the generic gunction limited.  
limited(<integer> ,min: 0 max: 255) and limited(<array>, 
of: <single-float>) are examples of limited types which are useful both 
for error checking and for optimization of compiled code.

Limited types are not classes.

Limited Type Constructor 5

Limited types are created with the generic function limited.  The first 
argument to limited is a class.  Depending on the class, additional keyword 
arguments are allowed to specify the constraints of the limited type.

Not all classes support limited; the methods for limited are documented 
individually on page 251.

Limited Integer Types 5

Limited integer types are subtypes of <integer> containing integers which 
fall within a specifed range.  The range is specified by min: and max: keyword 
arguments to limited.
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For example:

// accepts integers between -1000 and 1000 inclusive.
define method f (x :: limited(<integer>, min: -1000,
                                         max: 1000))
  …
  end method f;

//accepts all strictly positive integers.
define method f (x :: limited(<integer>, min: 1))
  …
  end method f;

Limited Integer Type Protocol 5

If w, x, y, and z are integers, the following equivalences hold:

■ instance?(x limited(<integer>, min: y max: z)) will be true if 
and only if instance?(x, <integer>), (y <= x), and (x <= z) are all 
true.

■ instance?(x, limited(<integer>, min: y)) will be true if and 
only if instance?(x, <integer>) and (y <= x) are both true.

■ instance?(x, limited(<integer>, max: z)) will be true if and 
only if instance?(x, <integer>) and (x <= z) are both true.

■ subtype?(limited(<integer>, min: w, max: x),
         limited(<integer>, min: y, max: z)) will be true if 
and only if (w >= y) and (x <= z) are both true.

■ subtype?(limited(<integer>, min: w …),
         limited(<integer>, min: y …)) will be true if and only if 
(w >= y) is true.

■ subtype?(limited(<integer>,… max: x),
         limited(<integer>,… max: z)) will be true if and only if 
(x <= z) is true.
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Limited Collection Types 5

Limited collection types are subtypes of <collection> (and of subclasses of 
<collection>) which may be constrained to be a specified size and to 
contain elements of a specified type.

A complete description of limited collection types is given in “Limited 
Collection Types” on page 124 in Chapter 8, “Collections.”
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Overview 6

 

All operations in Dylan are functions.

Functions accept zero or more arguments, and return zero or more values.  The 

 

parameter list

 

 of the function describes the number and types of the arguments 
which the function accepts, and the number and types of the values it returns.

There are two kinds of function, methods and generic functions.  Both are 
invoked in the same way.  The caller does not need to know whether the 
function it is calling is a method or a generic function.

A method is the basic unit of executable code.  A method accepts a number of 
arguments, creates local bindings for them, executes an implicit body in the 
scope of these bindings, and then returns a number of values.

A generic function contains a number of methods.  When a generic function is 
called, it compares the arguments it received with the parameter lists of the 
methods it contains.  It selects the most appropriate method, and invokes it on 
the arguments.  This technique of 

 

method dispatch

 

 is the  basic mechanism of 
polymorphism in Dylan.

All Dylan functions are objects, instances of 

 

<function>

 

.  Generic functions 
are instances of 

 

<generic-function>

 

 and methods are instances of 

 

<method>

 

.

 

Generic Functions 6

 

Generic functions can be created with 

 

define generic

 

 or by calling 

 

make

 

 on 
the class 

 

<generic-function>

 

.  They are most often created with 

 

define 
generic

 

.

Generic functions may also be created implicitly by 

 

define method

 

 or by slot 
specifications in class definitions.

A generic function definition includes a parameter list, which constrains the 
methods that can be added to the generic function; some aspects of the 
parameter must be matched by any method added.  In addition, a generic 
function parameter list may specify that all keyword arguments are permitted 
in a call to the generic function.

 

 

This document was created with FrameMaker 4.0.4
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Overview

 

Parameter list congruency is described on page 91. The complete syntax of 

 

define generic

 

 is given on page 364.

The following definition defines a generic function which accepts a single 
required argument.  All methods added to this generic function must also 
accept a single required argument.

 

define generic double (thing)

 

The following definition defines a generic function which accepts two 
arguments of type 

 

<number>

 

.  All methods added to the generic function must 
accept two required arguments of type 

 

<number>

 

 or subtype of 

 

<number>

 

.

 

define generic average (n1 :: <number>, n2 :: <number>)

 

Generic functions created with 

 

define generic

 

 may be sealed or open.  For 
details of this option, see “Declaring Characteristics of Generic Functions” on 
page 133.

 

Methods 6

 

Methods can be created with 

 

define method

 

,  

 

local

 

, and 

 

method

 

 program 
constituents.  

 

define method

 

 is used to define a method and add it to a 
generic function in a module binding.  

 

local

 

 is used to create local bindings 
that contain self-recursive and mutually-recursive methods.  

 

method

 

 is used to 
create and return methods for immediate application, for use as function 
arguments, or for storage in a variable or other data structure.  Methods are 
also created for slot getters and setters when a class is created.

Methods cannot be created with 

 

make

 

.

The parameters and return values of a method are described in its parameter 
list.  The specializers in the parameter list declare the types of the arguments 
acceptable to the method.  The method can be called only with arguments that 
match the specializers of the parameters. A complete description of parameter 
lists is given in “Parameter Lists” on page 82.

When the method is invoked, it executes its implicit body.  Statements in the 
implicit body are executed in order, in an environment which contains the 
parameters bound to the arguments.
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Methods may be invoked directly (used as functions), or indirectly through the 
invocation of a generic function.

 

Methods in Generic Functions 6

 

define method

 

 creates a method and adds it to a generic function in a 
module variable.  If the module variable indicated is not already defined, it is 
defined as with 

 

define generic

 

.  Thus,  

 

define method

 

 will create a new 
generic function or extend an old one, as needed.  Methods added to a generic 
function must have parameter lists that are congruent with the generic 
function’s parameter list.

The following method accepts a single argument of type 

 

<number>

 

, and 
returns the number doubled.  The method will be added to the generic function 
in the module binding 

 

double

 

.

 

define method double (thing :: <number>)
  => nother-thing :: <number>;
  thing + thing;
end method;

 

define method

 

 allows the programmer to control aspects of the sealing of 
the generic function to which the method is added.  For more details, see 
“Abbreviations for Define Inert Domain” on page 136.

A generic function with no required parameters can contain a single method.  
Adding a new method has the effect of replacing the existing method.

The complete syntax of 

 

define method

 

 is given on page 365.

 

Local Methods 6

 

local

 

 is used for creating methods in local bindings. A single 

 

local

 

 
declaration may create one or more such methods. These methods may be 
self-recursive and they may be mutually-recursive with other methods created 
by the same 

 

local

 

 declaration.

 

local

 

  is similar to 

 

let

 

 in that it creates local bindings in the current body.  
The parameters and the bodies of the methods are within the scope of the 
bindings.  In this way, the methods can refer to themselves and to other 
methods created by the same 

 

local

 

 declaration.

The complete syntax of 

 

local

 

 is given on page 379.
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define method newtons-sqrt (x :: <number>)

   local method sqrt1 (guess)

           // note call to other local method

           if (close-enough? (guess))

              guess

           else

              sqrt1 (improve (guess))  // note self-recursive 

call

           end if

         end sqrt1,

         method close-enough? (guess)

           abs (guess * guess - x) < .0001

         end close-enough?,

         method improve (guess)

           (guess + (x / guess)) / 2

         end improve;

    sqrt1 (1)

end method newtons-sqrt;

 

Bare Methods 6

 

Methods can also be created and used directly with the 

 

method

 

 statement.

Methods created directly can be stored in module variables, passed as 
arguments to generic functions, stored in data structures, or immediately 
invoked.

The following example creates a method and stores it in the module variable 
square.  It is appropriate to define a method in this way (rather than with 
define method) when the protocol of the function being defined does not 
require multiple methods.

 

define constant square = method (n :: <number>)

                           n * n;

                           end method;

 

It is sometimes useful to create a method inline and pass it directly to another 
function which accepts a method as an argument, as in the following example.
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// sort accepts a test argument, which defaults to \<

sort(person-list,

     test: method(person1, person2)

             person1.age < person2.age

            end method)

 

Methods created directly with the 

 

method

 

 statement may be called directly or 
they may be added to generic functions.  Usually, however, when you want to 
add a method to a generic function, you create and add the method in a single 
declarative step, with 

 

define method

 

.  

 

Closures 6

 

Methods created with 

 

method

 

 or 

 

local

 

 can be passed to functions and 
returned from functions.  In both cases, the methods retain access to the lexical 
context in which they were created.  Such methods are called 

 

closures

 

.

The following example defines a function which returns score-card methods.  
The method which is returned is 

 

closed over

 

 the 

 

score

 

 parameter.  Each time 
this method is called, it updates the 

 

score

 

 parameter and returns its new 
value.

 

define method make-score (points :: <number>)

  method (increase :: <number>)

    points := points + increase;

  end method;

end method make-score;

define constant score-david = make-score(100)

define constant score-diane = make-score(400)

score-david(0)

 

 

 

⇒

 

  100

score-david(10)

 

 

 

⇒

 

  110

score-david(10)

 

 

 

⇒

 

  120

score-diane(10)
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⇒

 

  410

score-david(0)

 

 

 

⇒

 

  120

 

Each invocation of 

 

make-score creates a new binding for score, so each 
closure returned by make-score refers to a different binding.  In this way, 
assignments to the variable made by one closure do not affect the value of the 
variable visible to other closures.

The following example defines a method for double that works on functions.  
When you double a function, you get back a method that accepts arguments 
and calls the function twice, passing the same arguments both times.  The 
method that is returned is closed over the function which was passed in as an 
argument.

define method double (internal-method :: <function>)

  method (#rest args)

    apply (internal-method, args);

    apply (internal-method, args);

    #f

  end method

end method;

define constant double-dave = double(score-david);

score-david(0)

 ⇒   120

double-david(10)

 ⇒   140

score-david(0)

 ⇒   140

Parameter Lists 6

The parameter list of a function describes the number and types of the 
arguments which the function accepts, and the number and types of the values 
it returns.
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The parameter list of a generic function is used to define the overall protocol of 
the generic function. It constrains the methods that may be added to the 
generic function, through the parameter list congruency rules described on 
page 91. It may also specify that calls to the generic function may contain any 
keyword arguments.

The parameter list of a method specifies the types of arguments to which the 
method is applicable, and declares local bindings to which those arguments 
will be bound during the execution of the body of the method. It may also 
declare the return value types of the method.

Kinds of Parameters 6

Dylan parameter lists support required parameters, rest parameters, keyword 
parameters, and sometimes a next-method parameter.  They also may include 
return type declarations.

The complete syntax of parameter lists is given in “Methods” on page 412.

Required parameters correspond to arguments which must be supplied when a 
function is called.  The arguments are supplied in a fixed order and must 
appear before any other arguments.

Each required parameter may be a name or a name specialized by a type.  
Specifying a type declares that supplied argument must be a general instance 
of that type.

A rest parameter allows a function to accept an unlimited number of 
arguments.*  After the required arguments of a function have been supplied, 
any additional arguments are collected in a sequence, which is passed as the 
value of the rest parameter. This sequence may be immutable, and it may or 
may not be freshly allocated. The types of rest parameters cannot be declared.

Keyword parameters correspond to arguments that are optional and may be 
given in any order.  Symbols are used among the arguments to guide matching 
of arguments to parameters.   These symbols are usually written in keyword 
syntax and so they are known as keywords.  Keyword arguments can only be 
supplied after all required arguments are supplied.  Keyword parameters may 
be specialized, restricting which values may be supplied for them.  Keyword 

* In practice, an implementation may place a reasonable limit on the number of arguments that 
may be passed to any function.



C H A P T E R  6  

Functions

84 Parameter Lists

parameters may also be given default values to be used when the caller does 
not supply a value.

Required parameters come first in the parameter list, followed by the rest 
parameter, if any, and then the keyword parameters, if any.  A rest parameter is 
indicated by the token #rest followed by the name of the parameter.  
Keyword parameters are indicated by the token #key followed by the keyword 
parameter specifiers, optionally followed by the token #all-keys.

If #rest and #key are used in the same parameter list, #rest must come 
first.  The rest parameter will be bound to a sequence containing all the 
keyword arguments and their corresponding values.

A next-method parameter is indicated by the token #next, followed by the 
name of the parameter.  It is not normally necessary to specify a next-method 
parameter explicitly.  If a next-method parameter is not specified by the 
programmer, define method inserts one with the name next-method.  If an 
explicit next-method parameter is given, it must come after the required 
parameters and before the rest and keyword parameters.  Details of using 
next-method are given in “Calling Less Specific Methods” on page 96.

Kinds of Parameter Lists 6

Each function (generic function or method) has an argument passing protocol 
specified by its parameter list. The argument passing protocol for a method 
must be compatible with the argument passing protocol of any generic 
function to which it is added, as described in “Parameter List Congruency” on 
page 91.

The argument passing protocol of a function can be described in one of the 
following ways:

■ A function is said to require a fixed number of arguments if its parameter 
list does not specify either #rest or #key.

■ A function is said to accept keyword arguments if its parameter list specifies 
#key.  The parameter list could also specify #rest if it is a method, but not 
if it is a generic function.

■ A function is said to accept all keyword arguments if its parameter list 
specifies #all-keys in addition to #key.
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■ A function is said to accept a variable number of arguments if its parameter 
list specifies #rest but does not specify #key. (Note: if the parameter list 
specifies #key in addition to #rest it is not said to accept a variable 
number of arguments.)

A method that accepts keyword arguments is said to recognize the keywords 
mentioned in its parameter list.  (A method may, of course, mention them in 
the parameter list and then ignore their values. It is still said to recognize 
them.)  It is possible for a method to accept keyword arguments in general but 
not recognize any particular keywords; it does this by specifying #key without 
any subsequent keyword parameters.

If a generic function that accepts keyword arguments mentions any specific 
keyword arguments in its parameter list, these are the mandatory keywords of 
the generic function. Every method added to the generic function must 
recognize these keywords.

A function may accept all keyword arguments by specifying #all-keys in its 
parameter list.

When a function that accepts keyword arguments is called, it is said to permit a 
keyword argument in the call if one of the following is true

■ The function is a method that recognizes the keyword.

■ The function is a generic function and the keyword is recognized by any of 
the applicable methods of the call.

■ The function accepts all keyword arguments.

■ The function is a generic function and any of the applicable methods of the 
call accepts all keyword arguments.

If a function that accepts keyword arguments is called, it will signal an error if 
called with a keyword argument that it does not permit, or if the arguments 
following the required arguments are not keyword/value pairs. This is true 
even if the function specifies #rest.

If a method is called via a generic function or via next-method (rather than 
directly), the method itself does not check whether it received any keyword 
arguments it does not permit, nor does it check that the arguments following 
the required arguments are keyword/value pairs. This check is performed by 
the generic function or next-method, and is made relative to the call as a whole, 
not relative to an individual method or the methods remaining to be called.
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A call to a function may supply the same keyword argument more than once.  
When this is done, the leftmost keyword/value pair is used.

Specializing Required Parameters 6

When you define a generic function or method, you may specify the types of 
the arguments appropriate for the generic function or method.  This is called 
specializing the generic function or method, or specializing the parameters of 
the generic function or method.

The following example defines a method specialized on <number>. The 
method will be applicable when double is called on a general instance of 
<number>.

define method double (thing :: <number>)

  thing + thing;

end method;

Specialization constrains the values that may be passed as the value of a 
parameter.  The function can be called only with arguments that are instances 
of the specializers of the corresponding parameters.

Specialization is useful in three way:

■ It makes the intent of the program clear.  It indicates to the compiler and to 
anyone reading the code that an error is signaled if an argument is not of the 
specializer type.

■ It allows the compiler to perform additional optimizations.

■ It is used to control method dispatch.  By defining methods on the same 
generic function with different specializers, you can define behavior 
applicable to different sets of types.    A generic function chooses among its 
methods on the basis of the methods’ specializers.  The generic function 
chooses the method whose specializers most closely match the types of the 
arguments.

Syntactically, specializers are operands. These operands are executed once 
when the function is created. They are not re-executed each time the function is 
called. The value of the operand must be a type.

It is most common for specializers to be constant module bindings or calls to a 
built-in type constructor such as singleton, limited, or union.
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There is a convenient syntax for singleton specializers, which is equivalent to 
explicitly calling singleton in the current lexical scope.

Keyword Parameters 6

The syntax of a keyword parameter is:

[ keyword  ] name [ :: operand ] [ = expression ]

If keyword is not supplied, then name is used to indicate both the keyword and 
the name of the parameter.   If the keyword and name are given independently, 
the keyword is used when calling the method, and the name is used as the name 
of the parameter inside the body of the method. 

The expression supplies a default value for the parameter.  It is used when the 
method is called and the keyword is not supplied.  It is executed each time the 
method is called and the corresponding keyword argument is not supplied.  If 
no expression is specified, the parameter corresponding to an unsupplied 
keyword argument is initialized to #f.  The expression is executed in a scope 
that includes all the preceding parameters, including required parameters, the 
rest parameter (if any), the preceding keyword parameters, and the 
next-method parameter (if any).

In the following example, all three keyword parameters have default values, 
and all three use the same name for the keyword and the parameter.

define method percolate (#key brand = #"maxwell-house",

                              cups = 4,

                              strength = #"strong")

  make-coffee (brand, cups, strength);

end method;

The caller can choose which keyword arguments to supply and what order to 
supply them in:

percolate (brand: #"java", cups: 10);
percolate (strength: #"strong",
           brand: #"starbucks",
            cups: 1);



C H A P T E R  6  

Functions

88 Parameter Lists

The following method has two keyword parameters.  In each, the name of the 
keyword and the name of the parameter is specified separately.  The first 
keyword parameter has a default value, the second does not.

define method layout (widget, #key position: the-pos = 0,

                                   size: the-size)

  let the-sibling = sibling (widget);

  unless (the-pos = position (the-sibling))

    align-objects (widget, the-sibling, the-pos, the-size);

end method;

layout(my-widget, position: 100, size: 500);

layout(my-widget, size: query-user-for-size() );

The keyword parameter syntax in which the keyword name and parameter 
name are given separately is needed to allow keyword names such as 
position: without forcing the method to use position as a local binding.  
If a method uses position as a local binding, it cannot access the module 
binding position (which contains a function).  The local binding would 
shadow the module binding.

All required arguments must be supplied before any keyword arguments can 
be supplied.  The following call to layout will signal an error:

layout(position: 100, size: 500);

Types for Keyword Parameters 6

When a type is indicated for a keyword parameter in a method, it is the same 
as establishing a type for a local binding.  Specifically, the types of any 
keyword parameters are not used for method dispatch.  Keyword parameter 
types are not allowed in generic function definitions, and do not figure into 
parameter list congruency.

The following two method definitions are equivalent:

method (#key X :: <integer>)

  ... X ...

end method;
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method (#key X)
  let X :: <integer> = X;
  ... X ...
end method;

If a keyword parameter is given a type, if #f is not an instance of that type, and 
if they keyword parameter is not given a default value, then the keyword 
parameter is essentially required.  An error of type <type-error> will be 
signaled if a call to the method does not include the keyword.

The following examples include keyword parameters that include both a type 
and a default value.

define method find-happiness (#key hint :: <symbol> =  #"here")

  ...

end method find-happiness;

define method find-food (#key hint :: <restaurant> 

                              =  lookup-default-restaurant())

  ...

end method find-food;

Result Values 6

Parameter lists may include value declarations.  Value declarations come at the 
end of the parameter list and are separated from the parameters by =>.  For 
each return value, a value declaration can specify a name and an operand or 
just a name if the type is <object>. The complete syntax of value declarations 
is given in “Methods” on page 412.

The result of executing the operand at the time the function is defined is a type, 
called a value type.  The name  never comes into scope.  It is included for 
documentation and for syntactic consistency with parameters.  It is valid for 
the same name to be used in both one parameter and one value declaration in 
the same parameter list; this is useful as documentation that a function returns 
one of its arguments.

The last value declaration can be preceded by #rest to indicate a variable 
number of return values.  A value declaration preceded by #rest is called a 
rest value declaration.  A value declaration not preceded by #rest is called a 
required value declaration. The value type in a rest value declaration is the 
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type of each one of the remaining individual values, not the type of a 
conceptual sequence of multiple values.

If a parameter-list does not contain a value declaration, it defaults to => 
#rest x :: <object>.  That is, the function can return any number of 
values of any type.

A function will always return the number and types of values declared in its 
parameter-list.  More precisely:

■ Each value returned by a function must be an instance of the corresponding 
value type, or else an error of type <type-error> will be signaled.

■ If fewer values are returned by the function’s body (or by the applicable 
method if the function is a generic function) than the number of required 
value declarations in the function’s parameter-list, the missing values are 
defaulted to #f and returned.  If #f is not an instance of the corresponding 
value type, an error of type <type-error> is signaled.

■ If a function does not have a rest value declaration, and more values are 
returned by the function’s body (or by the applicable method if the function 
is a generic function) than the number of required value declarations in the 
function’s parameter-list, the extra values are discarded and not returned.

Because of the parameter list congruency rules for result value declarations, the 
values returned by a generic function do not have to be checked by the generic 
function. The check inside a method will always be enough to verify that the 
return values are valid for the generic function.

define method average (x :: <number>, y :: <number>)

 => mean :: <number>;

 (x + y) / 2

end method;

// Returning multiple values

define method limits (center :: <number>, radius :: <number>)

 => (min :: <number>, max :: <number>);

 values(center - radius, center + radius);

end method;
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// The same name used both as a parameter and as a value type

define method rotate (image :: <picture>)

 => (image :: <picture>, rotation-angle :: <number>);

 …

end method;

// This method can return one, two, or three values

define method family (kid :: <person>)

  => (kid :: <person>, #rest parents);

  let mom = kid.mother;

  let dad = kid.father;

  case

    mom & dad => values(kid, mom, dad);

    mom => values(kid, mom);

    dad => values(kid, dad);

    otherwise => kid;

  end case

end method family;

Note that the following example does not declare a return value of type 
<number>. It declares a return value of type <object>. To specify a type, both 
the name and the type must be specified. If only one is given, it is taken as the 
name.

define method average (x :: <number>, y :: <number>)

 => <number>;

 (x + y) / 2

end method;

Parameter List Congruency 6

For any given generic function, the generic function and all methods for that 
function must have congruent parameter lists.  Two parameter lists are 
congruent if they satisfy the following conditions:

■ They have the same number of required arguments.

■ Each of the method’s parameter specializers is a subtype of the 
corresponding parameter specializer of the generic function.
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■ One of the following is true:

 

n both accept keyword arguments

 

n both accept a variable number of arguments

 

n both require a fixed number of arguments

■ If the generic function accepts keyword arguments, each method must 
recognize the mandatory keywords of the generic function.

In addition, the value declarations must be congruent, defined as follows:

■ If the generic function’s parameter list does not contain a rest value 
declaration, then

 

n The method’s parameter list must not contain a rest value declaration.

 

n The two parameter lists must contain the same number of required value 
declarations.

 

n Each value type in the method’s parameter list must be a subtype of the 
corresponding value type in the generic function’s parameter list.

■ If the generic function’s parameter list contains a rest value declaration, then:

 

n The method’s parameter list is permitted, but not required, to contain a 
rest value declaration.

 

n The method’s parameter list must contain at least as many required value 
declarations as the generic function’s parameter list.

 

n Each value type in the method’s parameter list must be a subtype of the 
corresponding value type in the generic function’s parameter list.  If the 
method has a rest value type, it corresponds to the generic function’s rest 
value type.  If the method has more required value types than the generic 
function, the extra ones must be subtypes of the generic function’s rest 
value type.

Parameter Lists of Implicitly Defined Generic Functions 6

As a general principle, the parameter list of an implicitly defined generic 
function will impose as few constraints as possible on the methods that may be 
added.  If a more constrained generic function definition is desired, an explicit 
definition should be used.

The parameter list of an implicitly defined generic function is determined by its 
method definitions.  These method definitions include both methods defined 
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using define method and slot getter and setter methods defined using 
define class.

■ The implicitly defined generic function has the same basic argument pattern 
as the methods.  Either they must all require a fixed number of arguments, 
they must all accept a variable number of arguments, or they must all accept 
keyword arguments.  A set of methods that includes members with more 
than one of these patterns violates the parameter list congruency 
requirement, and is an error.

■ The implicitly defined generic function has the same number of required 
arguments as the methods.  A set of methods that includes members with 
different numbers of required arguments violates the parameter list 
congruency requirement, and is an error.

■ Each required argument of the implicitly defined generic function is 
specialized on <object>.

■ If the implicitly defined generic function accepts keyword arguments, it does 
not have any mandatory keywords, nor does it accept all keyword 
arguments.

■ The implicitly defined generic function has a rest value declaration of 
<object>.

Method Dispatch 6

When a generic function is called, the generic function uses the types of the 
arguments to determine which methods to call.  This process is called method 
dispatch.

Method dispatch occurs in three phases.  First, all the applicable methods are 
selected.   Next, the applicable methods are sorted by specificity.  Finally, the 
most specific method is called.

Method Specificity 6

For any two methods A and B that are applicable to a given generic function 
call, one method may be more specific than the other, or the methods may be 
ambiguous methods.
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To order two methods A and B with respect to a particular set of arguments, 
compare each of A’s specializers with B’s specializer in the corresponding 
position using the argument that was supplied for that position.  The 
comparison works in the following way.

■ If the specializers are type equivalent, then A and B are unordered at the 
current argument position.  That is, this argument position provides no 
information about the order of the two methods.

■ Otherwise, if the specializer of A is a subtype of the specializer of B, then A 
precedes B at the current argument position.

■ Otherwise, if both specializers are classes, then their order in the class 
precedence list of the argument’s class is used to determine which is more 
specific.  If A’s specializer precedes B’s specializer in the class precedence list 
of the argument’s class, then A precedes B at the current argument position.

■ Otherwise, the methods are unordered in the current argument position.

The method A is more specific than the method B if and only if A precedes B  in 
at least one argument position, and B does not precede A in any argument 
position.  Similarly, B is more specific than A if and only if B precedes A  in at 
least one argument position, and A does not precede B in any argument 
position.  If neither of these cases apply then A and B are ambiguous methods.

When the applicable methods are sorted by specificity, the sorted list is divided 
into two parts, each possibly empty.  The first part contains methods that are 
more specific than every method that follows them.  The second part (which 
cannot itself be sorted) begins at the first point of ambiguity; there are at least 
two methods that could equally well go first in the second part.  When a 
generic function is called, if the first part of the sorted applicable methods is 
empty then an error is signaled.  Similarly, if the last method in the first part 
attempts to call next-method, an error is signaled.
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Consider the following class definitions:

define class <sentient> (<life-form>) end class;

define class <bipedal> (<life-form>) end class;

define class <intelligent> (<sentient>) end class;

define class <humanoid> (<bipedal>) end class;

define class <vulcan> (<intelligent>, <humanoid>) end class; 

Computing the class precedence list for <vulcan> yields 

#(<vulcan>,<intelligent>,<sentient>,<humanoid>,<bipedal>,<life-fo

rm>)

The class precedence lists computed for two different classes may have 
different precedence orders for some intermediate superclasses.  This is not a 
problem as long as there is no class which inherits from both classes.  For 
example, we could define a class <human> as follows:

define class <human> (<humanoid>, <intelligent>) end class;

For the class <human> defined as above, the class precedence list would be

(<human>,<humanoid>,<bipedal>,<intelligent>,<sentient>,<life-form

>)

It is not a problem that the two class precedence lists give different orders to 
some of the intermediate superclasses such as <bipedal> and <sentient>  
as long as no class is added which inherits from both <vulcan> and <human>.

When sorting the applicable methods, each specializer needs to be viewed with 
respect to the class precedence list for the class of the argument passed to the 
generic function in that argument position.  For example, given the following 
definitions

define method psychoanalyze (being :: <intelligent>)

  …

   end method;
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define method psychoanalyze (being :: <humanoid>) 

  …

   end method;

calling the generic function psychoanalyze on a being of type <human> 
would cause the method for <humanoid> to be called first, while calling the 
generic function on a being of type <vulcan> would cause the method for 
<intelligent> to be called first.

The order of arguments is not significant when computing method specificity.  
Given the above class definitions, the following methods are unambiguous 
when their generic function is called on two beings of type <vulcan> or two 
beings of type <human>, but the methods are ambiguous when the call 
includes one being of type <vulcan> and one of type <human>.

define method superior-being (a :: <intelligent>,

                              b :: <intelligent>) 

  most-intelligent-being (a, b)

  end method;

define method superior-being (a :: <humanoid>,

                              b :: <humanoid>)

  best-looking-being (a, b)

  end method;

Calling Less Specific Methods 6

In many situations, a subtype wants to modify the behavior of a method, rather 
than replace it completely; it wants to perform some work but also use the 
inherited behavior.  This can be accomplished with next-method.  Next-method 
is a function that, when called, invokes the next most specific method 
applicable in the generic function.  The next-method is the value of the #next 
parameter.  Normally this parameter is named next-method, though it can 
have other names at the programmer’s discretion.

One can think of next-method as invoking the method which would have been 
called if the current method did not exist.

If there are no more methods available, the next-method parameter will be 
bound to the value #f instead of to a method.
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Passing Different Arguments to Next-Method 6

In the usual case, next-method is called with no arguments.  This indicates that 
the next-method should be passed the same arguments that were supplied to 
the current method.

It is valid to supply arguments, including different arguments, when calling 
next-method.  However, if you pass different arguments, the new arguments 
must result in the same ordered sequence of applicable methods as the original 
arguments.  Otherwise, the program behavior is undefined.

In some cases, the methods in a generic function accept different keyword 
arguments.  In such cases, it’s convenient for the methods also to accept a rest 
parameter.  That way, all the keyword/value pairs passed to the generic 
function are captured in the rest parameter.  By using apply, the next-method 
can be invoked with the complete set of arguments.  (This technique is only 
necessary, of course, when the method calls next-method and passes arguments 
explicitly.)

As usual, if there are duplicates of a given keyword argument, the leftmost 
occurance is used. This allows keyword arguments to be easily overridden.

The Next-Method Parameter 6

The value of the next-method parameter is supplied by the generic function 
dispatch mechanism.  When a method is called by its generic function, the 
generic function dispatch mechanism automatically passes the appropriate 
value for next-method.  There is no way for a user program to specify the 
next-method argument when calling a method.

If you create a method directly (i.e., with method rather than with define 
method) and you want this method to accept a next-method parameter, then 
you should insert a #next into the parameter list explicitly.  You would do this 
if you are creating a method that you plan to add to a generic function, and you 
want this method to be able to call next-method.  You can also supply the 
next-method parameter when using define method, in cases where you 
want to give the parameter a different name.
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Operations on Functions 6

The Dylan language defines a number of functions which operate on other 
functions.

There are two broad categories of these functions:

■ Introspective functions take a function as an argument and return 
information about it. These are described in “Reflective Operations on 
Functions” on page 340.

■ Higher order functions take one or more functions as arguments, and return 
a new function. These are described in “Functional Operations” on page 334.
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Background 7

 

A long-standing problem of software engineering is the need to develop an 
organized way to deal with exceptions, situations that must be handled 
gracefully but that are not conceptually part of the normal operation of the 
program.

Of course it is possible to program exception handling without using special 
linguistic features.  For example, all functions could return an extra result that 
indicates whether they succeeded or failed, functions could take an extra 
argument that they consult if an exception occurs, or a designated 
exception-handling function could be called whenever a problem arises.  All of 
these approaches have been used in one real-life system or another, but they 
are deficient in two ways.  First, they are too informal and don’t provide 
enough structure to allow an organized, systematic approach to exception 
handling.  Second, and more importantly, the first two approaches do not 
provide textual separation between “normal code” and “code for dealing with 
exceptions”; exception-related code is sprinkled throughout the program.  This 
leads to two problems: one is the well-known mistake of forgetting to test error 
codes and thus failing to detect an exception (perhaps because the programmer 
believed the error could never occur); the other is that program clarity is lost 
because it isn’t easy to think about the main flow of the program while 
temporarily ignoring exceptions.

All exception systems involve the concept of “signal” (sometimes with a 
different name, such as “raise” or “throw”) and the concept of “handle” 
(sometimes with a different name such as “on-unit” or “catch”).  Most 
exception systems dynamically match signalers with handlers, first invoking 
the most recently established matching handler still active, and then, if that 
matching handler declines to handle the exception, invoking the next most 
recent matching handler, and so on.

In addition, it is necessary to have a way to clean up when execution of a 
function is terminated by a non-local exit initiated either by the function itself 
or by something it explicitly or implicitly called.

Exception systems may be name-based or object-based, they may be exiting or 
calling, and they may or may not provide formal recovery mechanisms.
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In a name-based exception system a program signals a name, and a handler 
matches if it handles the same name or “any.”  The name is a constant in the 
source text of the program, not the result of an expression.

In an object-based exception system a program signals an object, and a handler 
matches if it handles a type that object belongs to.  Object-based exceptions are 
more powerful, because the object can communicate additional information 
from the signaler to the handler, because the object to be signaled can be chosen 
at run-time rather than signaling a fixed name, and because type inheritance in 
the handler matching adds abstraction and provides an organizing framework.

In an exiting exception system, all dynamic state between the handler and the 
signaler is unwound before the handler receives control, as if signaling were a 
non-local goto from the signaler to the handler.

In a calling exception system the signaler is still active when a handler receives 
control.  Control can be returned to the signaler, as if signaling were a function 
call from the signaler to the handler.

Exiting exception systems are acceptable for errors.  However, they do not 
work for an exception that is not an error and doesn’t require an exit, either 
because there is a default way to handle it and recover or because it can safely 
be ignored by applications that don’t care about it.  Non-error exceptions are 
quite common in networked environments, in computers with gradually 
expiring resources (such as batteries), in complex user interfaces, and as one 
approach for reflecting hardware exceptions such as page protection violations 
or floating-point overflow to the application.

Most languages have not formalized how to recover from exceptions, leaving 
programmers to invent ad hoc mechanisms.  However, a formal recovery 
mechanism is useful for several reasons: it ensures that recovery is 
implemented correctly;  it allows options for recovery to be categorized just as 
exceptions are categorized;  and it allows introspection on the options for 
recovery, for example by a debugger.

The Dylan exception facility is object-based.  It uses calling semantics but also 
provides exiting handlers.  It provides formal recovery.
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Overview 7

 

The Dylan exception system is built on top of an underlying signal system. 
Together, the signal system and the exception system comprise the Dylan 
condition system.

At the signal layer, the condition system provides a way of establishing a 
run-time connection between a 

 

signaler

 

 and a 

 

handler

 

 through a 

 

condition

 

.  
This is essentially a run-time analog to the more usual fixed connection 
between a caller and a callee established through function-name matching.  
This layer of the condition system is little more than a way to locate and call a 
function.  The function call does not necessarily involve any exceptional 
situation or non-local flow of control.

At the exception layer, the condition system specifies a set of protocols for 
categorizing and handling exceptional situations through 

 

recovery

 

 or 

 

exit

 

.  
This higher layer provides overall structure, eliminates the possibility of failing 
to notice an exceptional situation, and provides a clean separation between 
“normal code” and “code for dealing with exceptions.”

The non-local exit and clean-up features of the 

 

block

 

 statement are often used 
in conjunction with the facilities described in this chapter. 

 

block

 

 is described 
on page 392.

 

Signalers, Conditions, and Handlers 7

 

A condition is an object used to locate and provide information to a handler.  A 
condition represents a situation that needs to be handled.  Examples are errors, 
warnings, and attempts to recover from errors.  All conditions are instances of 

 

<condition>

 

.  Several subclasses of 

 

<condition>

 

 are provided for 
additional behavior.  These are described in “Conditions” on page 234.

A handler is a function for handling conditions of a particular type.  Handlers 
may be installed dynamically with the local declaration 

 

let handler

 

, and 
with the 

 

exception

 

 clause of the 

 

block

 

 statement.  Dynamically installed 
handlers are active for the duration of the execution of a body.  More recently 
installed handlers take precedence over less recently installed handlers.   If no 
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dynamically installed handler handles a condition, the generic function 

 

default-handler

 

 is called.  

 

default-handler

 

 has predefined methods 
and may also have program-defined methods.

Signaling is the mechanism for locating the most recently installed handler for 
a condition.  The basic mechanism for signaling is the function 

 

signal

 

.  
Several functions built on 

 

signal

 

 are provided for additional behavior.  These 
are described in “Signaling Conditions” on page 346.

When a condition is signaled, the condition facility locates the most recently 
installed applicable handler and calls it.  An applicable handler is one that 
matches the signaled condition by type and by an optional test function 
associated with the handler.  The condition system is simply a way for a 
signaler and a handler to be introduced to each other.  Once they have met, 
they communicate through an ordinary function call.  The condition object is 
the argument to that call.

Like any function, the called handler either returns some values or takes a 
non-local exit.  Either way, the handler has handled the condition, and the act 
of signaling is completed.

A handler also has the option of declining to handle the condition by passing 
control to the next applicable handler.  It does this by tail recursively calling a 
next-handler function which it received as an argument.  The next-handler 
function calls the next most recently installed applicable handler with 
appropriate arguments.  This is analogous to the next-method function used in 
methods of generic functions.

(The call to next-handler is described as tail-recursive to ensure that all values 
returned by the call are returned by the handler.  Not returning all the values 
could interfere with the condition’s recovery protocol.  A handler that really 
knows what it is doing could use a non-tail-recursive call, but anything that 
knows what it’s doing in this situation is probably unmodular.  Note that a 
handler might not know the full recovery protocol, because the condition 
might be a subtype of the handler’s expected type.)

Every signaled condition is handled, because the system ensures that there is 
always an applicable default handler which does not decline.

If a handler handles a condition by returning (rather than by taking a non-local 
exit) the values it returns are returned by 

 

signal

 

.
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Exception Handling 7

 

A set of classes, functions, and associated conventions extend the underlying 
condition handling capabilities to provide a complete exception handling 
facility.

The classes are described in “Conditions” on page 234, and the functions are 
described in “Signaling Conditions” on page 346.

 

Stack Model 7

 

Condition handlers are installed dynamically, with more recent handlers 
shadowing previously installed handlers.  In addition, exception handling 
often involves the use of non-local exits.  For these reasons it is useful to 
describe the behavior of the exception system using the following terms from 
the stack model of function calling.

 

■

 

outside stack

 

The state existing just before the handler was established

 

■

 

signaling unit 

 

The conceptual program component that includes the expression that 
signaled the condition and does not include the expression that established 
the handler.  This informal concept provides a notion of where the interface 
boundary between the signaler and the handler lies.

 

■

 

middle stack

 

The state existing just before the signaling unit was called, minus the outside 
stack.  In other words, the state between the handler and the signaling unit.

 

■

 

inside stack

 

The state existing just before signaling occurred, minus the middle stack and 
outside stack.  In other words, the portion of the signaling unit prior to the 
call to 

 

signal

 

.
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Figure 7-1

The handler in Figure 7-1 may either return normally, in which case execution 
resumes as the call to signal returns normally, or the handler may make a 
non-local exit, such as calling the exit function from a dynamically active 
block statement.

Recovery and Exits 7

There are two ways to handle an exception: by recovery, or by exit.  Recovery 
involves making some repair to the program state and leaving control in the 
signaling unit.  Exit involves transfering control outside of the signaling unit 
through the use of a non-local exit.
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The simplest way to handle an exception is to exit the signaling unit by taking 
a non-local exit to a target established in the outside stack.  The 

 

exception

 

 
clause of the 

 

block

 

 statement provides a convenient mechanism for 
accomplishing this.

A less common handling style is to exit the signaling unit by taking a non-local 
exit to a target established in the middle stack, thus leaving the handler in force.

Instead of exiting, a handler can recover by returning control to the signaling 
unit.  This can be done either by returning values that the signaling unit will 
understand or by taking a non-local exit to a target established in the inside 
stack.

The following examples show three ways of handling a copy-protection 
violation while copying a series of files. Note that the signaling code does not 
need to know how the condition will be handled. The only changes are in the 
code which handles the condition.

 

// Assume there is a class for file-system errors.

// We are interested in a special kind of file-system error

// that occurs when attempting to copy a copy-protected file,

// so we define a new class to indicate such errors.

define class <copy-protection-violation> (<file-system-error>)

  slot file, init-keyword: file:;    // Store the file name

end class;

// Define a function to copy a single file. This

// function signals a <copy-protection-violation> if

// the file is copy-protected.

define method copy-file (source, destination)

  if ( copy-protected?(source) )

    signal(make(<copy-protection-violation>, file: source));

  else

    // copy normally

    notify-user("Copying %s to %s.", source, destination);

  end if;

end method;
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// The following function copies a sequence of files.

// If one of the files is copy-protected, the user is

// notified, and the remaining files are copied.

define method backup-all-possible (volume, archive)

  let handler <copy-protection-violation>

       = method (condition, next)

           // The handler just notifies the user and continues

           notify-user("The file %s could not be copied.",

                       condition.file);

         end method;

  // start copying files, with the handler in effect

  for (each-file in volume)

    copy-file(each-file, archive)

  end for;

end method;

// The following function stops copying as soon as it

// hits a copy-protected file

define method backup-exit (volume, archive)

  // set up a block so we can do a non-local exit

  block (exit)

   let handler <copy-protection-violation>

       = method (condition, next)

           // Notify the user and abort the backup

           notify-user(

    "Backup interrupted: the file %s could not be copied.",

                       condition.file);

           exit(#f);

         end method;

  // start copying files, with the handler in effect

    for (each-file in volume)

      copy-file(each-file, archive)

    end for;

  end block;

end method;
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// The following function uses the convenient exception clause of

// the block statement to achieve essentially the same effect as

// as backup-exit.

define method backup-block (volume, archive)

  // get ready to do backups   

  block ()

    // start copying files   

    for (each-file in volume)

      copy-file(each-file, archive)

    end for;

  exception (condition :: <copy-protection-violation>)

    notify-user(

   "Backup interrupted: the file %s could not be copied.",

                condition.file);

  end block;

end method;

 

Restarts 7

 

Recovering or exiting can be accomplished directly, or a more formal 
mechanism called 

 

restarting

 

 can be used.  Using restarts provides more 
assurance that the handler and the signaling unit agree on the meaning of what 
they are doing and provides some isolation of the handler from names and 
data representations internal to the signaling unit.

A handler restarts by signaling a restart.  All restarts are instances of 

 

<restart>

 

.  Any values needed for recovery are passed in the restart (that is, 
in initialization arguments that the restart remembers, typically in slots).  The 
restart is handled by a restart handler which either returns or takes a non-local 
exit.  If the restart handler returns some values, 

 

signal

 

 returns those values 
and the handler that called 

 

signal

 

 also returns them.  The call to 

 

signal

 

 
from the signaling unit that signaled the original condition returns the same 
values, and the signaling unit recovers as directed by those values.
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For every condition class there should be a 

 

recovery protocol

 

 that defines the 
meaning of handling by returning, the meaning of the values returned, and 
which restart handlers are supposed to be established by the signaling unit.  
The recovery protocol tells the handler what to expect from the signaler.  For 
many condition classes, this is the empty protocol: handling by returning isn’t 
allowed, and no particular restart handlers are provided.  In this case only 
handling by exiting is possible.  (Exiting might be accomplished by signaling a 
restart whose handler was established in the outside or middle stack and does 
a non-local exit back to where it was established, or by an ordinary non-local 
exit.)  The recovery protocol for a subclass should be compatible with the 
recovery protocol of a superclass.  That is, a handler that applies a class’s 
recovery protocol should operate correctly when the condition is an instance of 
some subclass of that class.

An example recovery protocol for a hypothetical 

 

<unbound-slot>

 

 condition 
could include the following:

 

■

 

Returning is allowed.  Returning a value uses that value as if it had been the 
contents of the slot.

 

■

 

A restart handler for 

 

<new-value>

 

 is available.  

 

<new-value>

 

 has 
initialization arguments 

 

value:

 

, the value to use, and 

 

permanent:

 

, which 
indicates whether to store the value into the slot or leave the slot unbound.

At present, no formal mechanism is provided for describing recovery protocols; 
they are left to the documentation of a condition class.  Introspective functions 
are provided for discovering which recovery facilities are actually available, 
but this is different from (and sometimes is a superset of) the recovery facilities 
guaranteed by a recovery protocol always to be available.

The debugger is the condition handler of last resort which receives control if no 
program-provided handler handles a serious condition.  (This is true even if 
the debugger provided cannot analyze or intervene in the execution of 
programs but can only abort or restart them.  The debugger might be merely a 
“core dumper,” a “bomb box,” or something similar.)  An interactive debugger 
ought to offer the user the ability to signal any restart for which a restart 
handler is applicable and to return if the condition’s recovery protocol allows 
it.  This could, for example, be done with a menu titled “Recovery.”
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Condition Messages 7

 

Some condition classes provide a message to communicate the meaning of the 
condition to the program user.

Condition messages are constructed using 

 

format strings

 

.  A format string is a 
string template into which values can be inserted to construct a message.  The 
two-character 

 

format directives

 

 

 

%d

 

, 

 

%b

 

, 

 

%o

 

, 

 

%x

 

, 

 

%c

 

, 

 

%s

 

, and 

 

%=

 

 are replaced by 
the corresponding element of the associated sequence of 

 

format arguments

 

.  
Upper and lower case letters are equivalent in these format directives.  The 
inserted value is formatted according to the following table:

 

*

 

The text printed by the 

 

%=

 

 format directive for any given object is 
implementation-defined.  The behavior when a format argument is not of the 
type specified in the table above is implementation-defined.  The behavior 

 

* 

 

These format directives are designed for compatibility with C’s 

 

printf

 

, with some 
ommisions and with the addition of %=.

Table 7-1 Format Directives

Directive Argument Type Textual Format

%d <integer> decimal number

%b <integer> binary number

%o <integer> octal number

%x <integer> hexadecimal number

%c <character> character (with no quotes)

%s <string> string (with no quotes)

%s <condition> condition message (with no quotes)

%= <object> unspecified, but works with any object

%% none literal %
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when too many or too few format arguments are supplied is 
implementation-defined.

The two-character sequence %% does not consume a format argument, but 
inserts a % character.

All other uses of the % character in a format string are implementation-defined.

There is no standard way to get the message from a condition (although it can 
be inserted into another message).  Debuggers get the message using 
implementation-dependent mechanisms.  A streams library or other 
implementation-dependent feature might include a function to get the message 
from a condition.  However, in some implementations, the message might only 
exist in the debugger, not in the program runtime.

There is no standard way for a user-defined condition class to supply a 
message.  Individual implementations and libraries can specify such a 
mechanism that is appropriate to their needs.

Introspective Operations 7

The function do-handlers allows introspection of all the dynamically active 
handlers.  For each handler, it provides the type, test, function, and 
init-arguments that were declared when the handler was installed.  
do-handlers is typically used by the debugger or other error-recovery 
system to discover what restart handlers are available before signaling a restart.

Additional operations support introspection on conditions.  See “Introspection 
on Conditions” on page 351 for a complete description of these introspective 
functions.
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Overview 8

 

Collections are aggregate data structures which map from 

 

keys

 

 to 

 

elements

 

. 
All collections are instances of the class 

 

<collection>

 

.

 

<collection>

 

 has two covering subclasses:  <sequence> and 

 

<explicit-key-collection>

 

.  Every concrete subclass of 

 

<collection>

 

 
must also be a subclass of 

 

<sequence>

 

 or 

 

<explicit-key-collection>

 

.  

 

Sequences

 

 use successive non-negative integers as keys;  

 

explicit key 
collections

 

 may use any object as a key.  Both of these classes have predefined 
subclasses and may be additionally subclassed by programmers.  See 
“Collections” on page 199 for a complete description of these classes.

A large number of functions are available on collections, including functions 
for iteration, mapping, random access of elements, sorting, filtering, etc.  See 
“Collection Operations” on page 281 for a complete description of these 
functions.

 

The Iteration Protocol 8

 

All collections implement an 

 

iteration protocol 

 

that allows iteration to be 
specified abstractly.  Many higher level operations on collections can be defined 
in terms of only the iteration protocol. For many programs these higher level 
operations are sufficient; they will not need to use the iteration protocol 
directly. The iteration protocol is used by programs defining new collection 
types, and for certain types of iteration that cannot be handled by the built-in 
higher level operations.

The iteration protocol centers on the notion of a “state” object for an iteration.  
Each collection class chooses its own most appropriate representation for an 
iteration state, and only the functions of the iteration protocol are affected by 
this choice.

Use of the iteration protocol is based on the assumption that the collection over 
which iteration occurs remains static for the duration of the iteration.  That is, 
arbitrary changes to a mutable collection while an iteration is in progress may 
cause the iteration to produce unpredictable results.
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With notable exceptions, two or more iterations over the same collection are not 
guaranteed to produce the same values in the same order, even if the collection 
is unaltered. For details, see “Iteration Stability and Natural Order” on 
page 116.

The built-in collection functions are implemented in terms of the iteration 
protocol.  When defining a new collection class, a programmer need only 
define the iteration protocol for the class.  Once this is done, instances of the 
class can be used with all the built-in collection functions.  Of course, in some 
cases it will be more efficient to define methods on these functions optimized 
for the new class, rather than relying on the default implementation based on 
the iteration protocol.

 

Collection Keys 8

 

All collections in Dylan are keyed.  That is, all collections can be viewed 
abstractly as partial functions that map keys to elements.  (This choice 
precludes pure sets from being considered collections, although it is 
straightforward simply to ignore the keys for a collection and consider it 
simply as a set of elements.)  The 

 

element

 

 function implements this partial 
mapping of keys to elements.

Every collection has a 

 

key test

 

, which is the test used for determining whether 
a given key matches a key in the collection.  The key test of a collection can be 
accessed using the 

 

key-test

 

 function.

 

Iteration Stability and Natural Order 8

 

A collection is 

 

stable under iteration

 

 if any two iterations over the collection 
are guaranteed to produce the same values in the same order in the absence of 
modifications to the table.  If this guarantee does not hold, the collection is 

 

unstable under iteration

 

.

Sequences are required to be stable under iteration.  Explicit key collections 
may or may not be stable under iteration.
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The order in which elements and keys are enumerated by the iteration protocol 
for a particular iteration is known as the 

 

natural order

 

 for that iteration over 
the collection.  If a collection is stable under iteration, then every iteration over 
that collection will have the same natural order, and we may speak of the 
natural order of the collection itself.  Most of the operations on collections are 
required to operate in natural order, usually for the purpose of understanding 
interactions among side effects. 

 

Mutability 8

 

Some collections can be modified after they have been created while others 
cannot.  The 

 

<mutable-collection>

 

 and 

 

<stretchy-collection>

 

 
mixin classes are provided to allow methods to distinguish between mutable 
and immutable collections.  Instances of 

 

<mutable-collection>

 

 can have 
their elements changed after they are created.  Instances of 

 

<stretchy-collection>

 

 can have keys added and removed after they are 
created.

An element of a mutable collection is set to a new value with 

 

element-setter

 

.  If the collection is not stretchy, than the key specified must 
already be present in the collection; its value will be changed.  If the collection 
is stretchy, then the key will be added if it is not already present.  If the 
collection is a stretchy sequence and the key is not already present, then the 
size of the sequence will first be set to the new key minus 1, and then the value 
of the new key will be set.

A key and its corresponding value can be removed from an explicit key 
collection with the function 

 

remove-key!

 

.

 

Collection Alteration and Allocation 8

 

The contents of a collection are the key/value pairs stored in the collection.  
The contents are said to be 

 

altered

 

 when:

 

■

 

Keys are added or removed (according to the collection's key test).

 

■

 

The value of a key (according to the key test) changes (as tested by 

 

==

 

).
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■

 

The ordering of the key/value pairs changes.  This type of alteration is only 
possible for explicit key collections which are stable under iteration.

A function 

 

destructively modifies

 

 its argument collection if calling the function 
could alter the contents of the argument collection.  Unless explicitly 
documented to do so, functions do not destructively modify their arguments.

The 

 

!

 

 convention, described on page 23, is used to indicate some destructive 
operations.

Unless explicity noted, destructive operations are not required to leave their 
arguments in a well-defined state.  More particularly, a destructive operation 
does not in general turn the argument into the result.  It may reuse components 
of the argument or alter the argument in some unpredictable way in order to 
produce the result.  As a general rule, the return value of the function should be 
used.

A collection 

 

C 

 

is 

 

fresh

 

 if modification of any pre-existing collection's contents 
can never modify the contents of 

 

C

 

 and if modifications to 

 

C

 

 can never modify 
the contents of any pre-existing collection.  Immutable collections cannot be 
modified, so a fresh immutable collection can share structure with other 
immutable collections.

For example, given that 

 

<pair>

 

 is mutable and the result of a call to 

 

list

 

 is a 
fresh instance of 

 

<pair>

 

, we can guarantee that the following expression is 
always false:

 

list(1) == list(1)

 

Collection Alignment 8

 

Some operations on collections are defined to allow the use of more than a 
single collection.  For example, some looping functions accept any number of 
collections and operate on these collections in parallel.  Each pass through the 
loop uses one element from each collection.  The presence of  collections which 
are unstable under iteration can create problems for multi-collection operations 
unless special care is taken.  If iteration is effectively performed in random 
order, then naively performing parallel iterations over two different collections 
would randomly combine values from the two collections.  This would 
presumably have no meaning.
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To prevent such random combinations, operations on more than one collection 
must in general align the collections.  

 

Collection alignment

 

 consists of 
effectively computing the intersection of the collections’ key sequences and 
then using the random-access operations (

 

element

 

 and 

 

element-setter

 

) to 
operate on the collections themselves.

If implemented naively, this definition of alignment has the potential for 
extreme inefficiency because of its dependence on 

 

element

 

 and the potential 
loops implied by the calls to 

 

key-sequence

 

.  However, an important special 
case of this problem is that of iterating over multiple sequences.  In this case, 
the intersection of key sequences will always be the non-negative integers up to 
the length of the shortest sequence.  Further, unlike collections in general, 
sequences are required to exhibit stability so the explicit computation of key 
sequences is not actually required.  It is correct simply to iterate until one or 
more of the sequences is exhausted.

Iteration operations that store results in a target collection must generally 
include the the target collection during alignment.  This alignment requirement 
is relaxed if the target collection is a 

 

<stretchy-collection>

 

.  In this case, 
the target collection  is not considered during alignment.  Rather, only the 
source collections are aligned.  New keys may be added to the target collection 
during the course of the iteration, and keys may be given new values.  Other 
keys are left undisturbed.

It is only possible to align collections which have identical key tests.

 

Defining a New Collection Class 8

 

Every collection class must provide an implementation of the iteration 
protocol.  A method on 

 

forward-iteration-protocol

 

 is required.  A 
method on 

 

backward-iteration-protocol

 

 is optional.

Every collection must provide or inherit methods for 

 

element

 

 and 

 

key-test

 

.  If the collection is also a 

 

<mutable-collection>

 

, it must 
provide or inherit a method for 

 

element-setter

 

.  A collection that is not a 

 

<mutable-collection>

 

 must provide an implementation of 

 

type-for-copy

 

.
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Tables

 

Individual collection classes may impose further requirements on their 
subclasses.  For example, concrete subclasses of 

 

<table>

 

 must provide or 
inherit a method for 

 

table-protocol

 

.

For efficiency, it may be desirable to provide specialized implementations for 
certain generic functions.  Collections that can implement functions such as 

 

size

 

 or 

 

member?

 

 more efficiently should do so.  Sequences that can reuse 
storage to implement functions such as 

 

reverse!

 

 and 

 

sort!

 

 should do so.

 

Tables 8

 

Tables map arbitrary keys to elements.  Table keys may be any object, including 
complex objects such as strings.  All tables are instances of 

 

<table>

 

.  

 

<table>

 

 
is the only instantiable subclass of 

 

<explicit-key-collection>

 

 defined 
by Dylan.  Tables are unstable under iteration.

The iteration protocol for tables is implemented in terms of the function 

 

table-protocol.  Every concrete subclass of <table> must provide or 
inherit a method for table-protocol.  This function accepts a table as an 
argument, and returns an equivalence predicate and hash-function, as 
described below.

The equivalence predicate of a table is used to compare keys.  (It is the table’s 
key-test.)  The table maps keys that are equivalent under the predicate to the 
same table element.  An equivalence predicate is a boolean function of two 
arguments that returns true if and only if the arguments are considered to be 
the same according to some specified criteria.  For a function to be used as an 
equivalence predicate, it must be reflexive, commutative, and transitive.  That 
is, for a function F and any arguments X, Y, and Z in the domain of F, the 
following must be true:

■ F(X,X) must be true.

■ F(X,Y) must be true if and only if F(Y,X) is true.

■ If both F(X,Y) and F(Y,Z) are true then F(X,Z) must be true.

An equivalence class (for an equivalence predicate) is a set of objects, or 
potential objects, that are all the same under the specified equivalence 
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predicate and different from all objects not in the class.  (This use of the term 
“class” does not refer to Dylan classes.)

An object is said to be visibly modified with respect to an equivalence 
predicate if the modification changes the equivalence class of the object.  The 
modifications that are visible to an equivalence predicate are determined by the 
definition of the predicate.  (For example, changing a character in a string 
would be a visible modification with respect to an equivalence predicate that 
compared strings character by character, but it would not be a visible 
modification with respect to an equivalence predicate that compared objects by 
identity, without regard for their contents.)

If an object X is a key in a table T and is visibly modified with regard to the test 
function of T, then the consequences are unspecified if any of the following 
objects are used as a key in any subsequent operations on T:

■ The original object, X.

■ Some object Y that is in the same equivalence class (as determined by the 
test function) as X prior to the modification of X.

■ Some object Z that is in the same equivalence class (as determined by the 
test function) as X after the modification of X.

Each table also has an associated hash function, which is a function that relates 
table keys and table elements by computing hash codes.  A hash code is a 
conceptual object consisting of a hash id and its associated hash state.  (It is not 
an actual Dylan object.)  A hash id is an integer encoding of an object.  A hash 
state is an object of implementation-dependent type which is associated with a 
particular hash id and can be used by the implementation to determine 
whether the hash id has been invalidated.  A hash function accepts one 
argument, a key, and returns two values, a hash id and a hash state, which 
together represent the hash code.

Each hash function is associated with a specific equivalence predicate, and 
must obey the following constraints:

■ The domain of the hash function must include the domain of valid 
arguments to the corresponding equivalence predicate.  A hash function 
need not be defined for all Dylan objects, only those which are acceptable as 
arguments to the equivalence predicate.

■ All objects in a given equivalence class have the same (=) valid hash id, 
where validity is determined from the associated hash state.
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In addition, a hash function should have the property that the hash ids 
computed by it are well distributed over the range of possible values.  That is, 
it should be unlikely that two randomly chosen equivalence classes have the 
same valid hash id.

Element Types 8

Each instance X of <collection> has a conceptual element type which is an 
instance of <type>.  If the element type of X is T, X stores elements of type T.  
The element method will always return an instance of T and the 
element-setter method (if X is mutable) will accept any instance of T.  The 
analogous functions returned by the iteration protocol also return/accept any 
instance of T.

Each subclass C of <collection> has a conceptual element type  which is 
either T1 or indefinite ⇐  T1, where T1 is a type. (The symbol “⇐  “ in the 
“indefinite ⇐  T1” notation is an abbreviation for “subtype.”)

If the element type of C is T1, each general instance of C must have an element 
type T2 that is type equivalent to T1. Each subclass of C must have an element 
type T3 that is type equivalent to T1.

If the element type of C is indefinite ⇐  T1, each general instance of C must have 
an element type T2 that is a subtype of T1.  Therefore element on that instance 
will return an instance of T1 (and will not return all possible instances of T1 if 
T2 is a proper subtype of T1).  It is not determined by C what the applicable 
element-setter method will accept (thus C's element type is said to be 
"indefinite").  Each subclass of C must have element type T3 or indefinite ⇐  T3, 
where T3 is a subtype of T1.

User-defined collection classes must also follow these rules.
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Note: the above statements about the value returned by element only apply 
when no default: keyword argument is specified.

Table 8-1 Element Types of Built-in Collections 

Collection Element Type

<collection> indefinite ⇐  <object>

<explicit-key-collection> indefinite ⇐  <object>

<mutable-collection> indefinite ⇐  <object>

<stretchy-collection> indefinite ⇐  <object>

<sequence> indefinite ⇐  <object>

<mutable-explicit-key-collection> indefinite ⇐  <object>

<mutable-sequence> indefinite ⇐  <object>

<table> indefinite ⇐  <object>

<object-table> indefinite ⇐  <object>

<array> indefinite ⇐  <object>

<vector> indefinite ⇐  <object>

<simple-vector> indefinite ⇐  <object>

<stretchy-vector> indefinite ⇐  <object>

<deque> indefinite ⇐  <object>

<string> indefinite ⇐  <character>

<range> indefinite ⇐  <real>

<simple-object-vector> <object>

<unicode-string> K1 (see note below)

<byte-string> K2 (see note below)

<list> <object>

<pair> <object>

<empty-list> <object>
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Note: K1 and K2 are subtypes of <character> that have not been given 
standardized  names.

By convention, if C is an instantiable subtype of <collection> and C's 
element-type is indefinite ⇐  <object>, then instantiating C produces a 
collection whose element type is <object>.

Instantiating <range> produces a collection whose element-type is 
unspecified except that it is a subtype of <real> and every element of the 
range is an instance of the element type.

The preceding section describes the element type of every object that is created 
by make of an instantiable built-in collection class.  The element type of an 
instance of a user-defined collection class is unspecified, but should follow the 
rules given here in order to preserve the property that any operation that 
works on an instance of a supertype must work on an instance of a subtype.

Limited Collection Types 8

Limited collections are subtypes of <collection> which are constrained to 
have a particular size or dimensions and which are constrained to hold 
elements of a particular type.

If C is a subclass of <collection> whose element type is indefinite ⇐  T1, 
then it is possible to create any number of limited collection types which can be 
described as limited(C, of: T2, size: S).

Like a collection class, a limited collection type has a conceptual element type. 
The element type of limited(C, of: T2, size: S) is T2.  T2 must be an 
instance of <type> and a subtype of T1.  C is the base class of the new limited 
collection type.

S limits the size of instances of a limited collection type.  S can be #f, which 
means no limitation, or a non-negative integer, which means that every 
instance of the limited collection type has exactly that many elements.

S must be #f if C is stretchy (e.g. <table>, <stretchy-vector>, or 
<deque>).

If C is <array> then it is also possible to create any number of limited 
collection types which can be described as limited(<array>, of: T, 
dimensions: D). D must be a sequence of non-negative integers; the rank of 
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each instance is size(D) and the dimensions of each instance are the elements 
of D.  You cannot specify both size: and dimensions: in the same type.

Some limited collection types are instantiable. make(limited(C, …), …) 
returns a direct instance of some subclass of C.  Typically this class is not 
standardized and its name is not exported, but it is valid for this class to be C 
itself.  There is nothing special about this class; it is simply a class known to the 
applicable limited method and its creation is subject to all the usual sealing 
restrictions.

An object X is an instance of a limited collection type limited(C, of: T2, 
size: S) if and only if all of the following are true:

■ object-class(X) is a subclass of C.

■ X's size matches S, as described above.

■ If X is an instance of <stretchy-collection> then S must be #f.

■ The element type of X is equivalent to T2.

An object X is an instance of a type limited(C, of: T2, dimensions: 
D) if and only if all of the following are true:

■ object-class(X) is a subclass of C.

■ dimensions(X) = D.

■ X is not an instance of <stretchy-collection>.

■ The element type of X is equivalent to T2.

Each element of an instance of a limited collection type must be an instance of 
the element type.  Fetching an element of the collection is guaranteed to return 
an instance of the element type.    Setting or initializing an element will check 
that the new element is an instance of the element type and signal an error of 
type <type-error> if it is not.

If L1 is a subtype of L2 and L2 is a limited collection type, then L1 is either a 
singleton of an instance of L2 or a limited collection type that satisfies one of the 
following sets of rules:

1. If neither L1 nor L2 specifies a dimensions: attribute, let L1 be 
limited(C1, of: T1, size: S1), and L2 be limited(C2, of: T2, 
size: S2).  All of the following must be true:

 

n C1 is a subclass of C2.

 

n If S2 is not #f, S1 = S2.
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n T1 and T2 are equivalent types.

2. If either L1 or L2, specifies a dimensions: attribute, then all of the 
following must be true.  Let L1 be limited(C1, of: T1, dimensions: 
D1), and L2 be either limited(C2, of: T2, dimensions: D2) or 
limited(C2, of: T2, size: S2).

 

n C1 is a subclass of C2.

 

n D1 is present (i.e. L1 must specify a dimensions attribute)

 

n If D2 is present, D1 = D2.

 

n If S2 is not #f, reduce1(\*, D1) = S2.

 

n T1 and T2 are equivalent types

The limited collection type limited(C, of: T, size: S) is a subtype of 
C.  The limited collection type limited(C, of: T, dimensions: D) is a 
subtype of C.

Element Type Subclassing 8

The element-type subclassing rules are generalized to limited collection types 
as follows (this is implied by the preceding and is included here for 
explanatory purposes only):

If the element type of a limited collection type L1 is T1, each instance of L1 
stores elements of type T1.  The element method will always return an 
instance of T1 and the element-setter method will accept any instance of 
T1.  Each limited collection type that is a subtype of L1 must have an element 
type T2 that is equivalent to T1.

If the element type of a class C1 is indefinite ⇐  T1,  each limited collection type 
that is a subtype of C1 has an element type T2 and T2 must be a subtype of T1.  
Thus element on any instance of C1 will return an instance of T1 (and will not 
return all possible instances of T1 if T2 is a proper subtype of T1), and it is not 
determined by C1 what the applicable element-setter method will accept 
(hence the term “indefinite”).

The above statements about the value returned by element only apply when 
no default: keyword argument is specified.
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Creating Limited Collection Types 8

You obtain a type object for a limited collection type by calling the limited 
generic function on a collection class. There are several built-in methods for 
limited specialized for specific subclasses of <collection>.  Each of these 
methods accepts a required keyword argument of: and also accepts an 
optional keyword argument size: if the class is not stretchy. If the class is 
<array> the optional keyword argument dimensions: is also accepted. Each 
method returns a type.  The returned type  is never a class.  If the size: 
keyword argument is accepted but not supplied, it defaults to #f.

Users cannot write portable methods for limited.  There are no built-in 
methods for limited applicable to user-defined classes.

Uninstantiable Limited Collection Types 8

Methods on limited support the creation of uninstantiable limited types for 
the following classes:

■ <collection>

■ <explicit-key-collection>

■ <mutable-collection>

■ <stretchy-collection>

■ <mutable-explicit-key-collection>

■ <sequence>

■ <mutable-sequence>

While limited types created from these classes cannot be instantiated, they are 
still useful as specializers.

Instantiable Limited Collection Types 8

Methods on limited support the creation of instantiable limited types for the 
following classes:

■ <table>

■ <object-table>
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■ <array>

■ <vector>

■ <simple-vector>

■ <stretchy-vector>

■ <string>

■ <range>

These methods are are described in Chapter 12, “The Built-In Functions,” on 
page 251.
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Sealing 9

 

Overview 9

 

This chapter describes techniques for 

 

sealing

 

 portions of a Dylan program by 
declaring that classes or functions will never be used in particular ways, or will 
never be extended in particular ways.  These 

 

sealing directives

 

 enable a range 
of compiler optimizations, and also clarify the programmer’s intent.

The sealing directives include:

 

■

 

Declaring a class to be 

 

sealed

 

 or 

 

open

 

.  This controls whether a class can 
be directly subclassed outside the library in which it is defined.

 

■

 

Declaring a class to be 

 

abstract

 

 or 

 

concrete

 

.  This controls whether a 
class can have direct instances.

 

■

 

Declaring a class to be 

 

primary

 

 or 

 

free

 

.  This controls how a class can be 
used for multiple inheritance.

 

■

 

Declaring a generic function to be 

 

sealed

 

 or 

 

open

 

.  This controls whether 
methods can be added to the generic function from outside the library in 
which the generic function is defined.

 

■

 

Using 

 

define inert domain

 

, or using the abbreviations 

 

define 
inert method

 

 and 

 

inert slot

 

.  These disallow the addition of some 
methods from outside the library in which the generic function is defined.

With the exception of 

 

define inert domain

 

, these directives are expressed 
as adjectives on the generic function definition, class definition, method 
definition, or slot specification.

 

Explicitly Known Objects 9

 

A class, generic function, or method may or may not be 

 

explicitly known

 

 to a 
given library. A sealing restriction may limit the set of classes, generic 
functions, and methods to those which are explicitly known; others cannot be 
added.

 

■

 

A class 

 

C

 

 is explicitly known in a library 

 

L

 

  if it is defined by 

 

define 
class

 

 in 

 

L

 

 or in a library used by 

 

L

 

.

 

 

This document was created with FrameMaker 4.0.4
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Declaring Characteristics of Classes

 

■

 

A generic function 

 

G

 

 is explicitly known in a library 

 

L

 

 if 

 

G

 

 is defined by 

 

define generic

 

 in the library or in one of the libraries 

 

L

 

 uses, or if 

 

G

 

 is 
implicitly defined by the definition of a method explicitly known in 

 

L

 

 or if 

 

G

 

 
is implicitly defined by a slot specification for a class explicitly known in 

 

L

 

.

 

■

 

A method 

 

M

 

 is explicitly known in a library 

 

L

 

 if 

 

M

 

 is defined by 

 

define 
method

 

 in 

 

L

 

 or in one of the libraries 

 

L

 

 uses, or if 

 

M

 

 is defined by a slot 
specification for a class explicitly known in 

 

L

 

.

 

Declaring Characteristics of Classes 9

 

A class definition may include the adjectives 

 

sealed

 

, 

 

open

 

, 

 

primary

 

, 

 

free

 

, 

 

abstract

 

, or 

 

concrete

 

.  These adjectives declare characteristics of the class.

Additional restrictions on the ability to subclass classes may be imposed by 

 

define inert domain

 

.

 

■

 

An explicitly defined class can be declared to be either sealed or open.  If a 
class is sealed then no additional direct subclasses other than those explicitly 
known in the same library may be created.  Thus, it is an error to define a 
direct subclass of a sealed class in some library other than the one which 
defined the sealed class, or to use 

 

make

 

 of 

 

<class>

 

 with a sealed class 
included in the direct superclasses specified by the 

 

superclasses:

 

 
initialization argument.  An open class does not prohibit such operations.
When explicitly defining a class, the default is for the class to be sealed.  This 
may be overriden by explicitly specifying that it is open.  A class created 
using 

 

make

 

 of 

 

<class>

 

 is open.  There is no specified way to create a sealed 
class using 

 

make

 

.

 

■

 

An explicitly defined class may be declared to be either primary or free.  The 
default is free.  It is illegal for a class to have more than one primary 
superclass unless each is a subclass of  another. Slots defined in a primary 
class may be accessed more efficiently than slots defined in a free class. 

 

■

 

An explicitly defined class may be defined to be either abstract or concrete.  
The default is concrete.  The superclasses of an abstract class must be 
abstract.  The default method on 

 

<make>

 

 will signal an error if passed an 
abstract class. For an abstract class to be instantiable, it must define a 
method on 

 

make

 

 which delegates to a concrete subclass.
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Declaring Characteristics of Generic Functions 9

 

A generic function definition may include either the adjective 

 

sealed

 

 or the 
adjective 

 

open

 

.  These adjectives declare whether the generic function is sealed.

If a generic function is sealed then no additional methods other than those 
explicitly known  in the same library  may be added to the generic function.  
Thus, it is an error to define a method for a sealed generic function in some 
library  other than the one which defined the sealed generic function, or to 
apply 

 

add-method

 

 or 

 

remove-method

 

 to a sealed generic function.  An open 
generic function does not prohibit these operations.

When explicitly defining a generic function, the default is for the generic 
function to be sealed.  It can be declared to be open by using the 

 

open

 

 adjective 
in the generic function definition.  A generic function that has no explicit 
definition  but has an implicit definition provided by explicit definitions  of 
generic function methods or slot accessors is also sealed.  A generic function 
created using 

 

make

 

 of 

 

<generic-function>

 

 is open.  There is no specified 
way to create a sealed generic function using 

 

make.

 

Additional restrictions on the ability to add methods to a generic function may 
be imposed by 

 

define inert domain

 

. 

 

Define Inert Domain 9

 

define inert domain

 

 is used to make specific portions of a generic 
function and of the class hierarchy invariant without disallowing all future 
changes. The arguments to 

 

define inert domain

 

 are an explicitly known 
generic function and a series of types, one for each required argument of the 
generic function.

The complete syntax of 

 

define

 

 

 

inert domain is given on page 376.

A define inert domain definition in a library L for a generic function G 
with types T1…Tn imposes the following constraints on programs:
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1. A method M which is congruent to G and which is not an explicitly known 
method in L may be added to G only if at least one of the specializers for M 
is disjoint from the corresponding T.

2. A method M may be removed from G only if at least one of the specializers 
for M is disjoint from the corresponding T.

3. A class C (with direct superclasses D1…Dm) which is not explicitly known in 
L may be created only if no method in G actually blocks C.

 

n A method M (with specializers S1…Sn) in G potentially blocks C at 
argument position i if there exist j and k such that Dj is a pseudosubtype 
of Si, Dk is a pseudosubtype of Ti, and Dk is not a pseudosubtype of Si.

 

n A method M actually blocks C if M potentially blocks C at some argument 
position, and for every argument position i where Si and Ti are disjoint, M 
potentially blocks C at i.

The third constraint is illustrated by the following example:

define generic m (x);

define class <t> (<object>) end class <t>;

define class <s> (<object>) end class <s>;

define method m (s :: <s>) end method m;

define inert domain m (<t>);

define class <c> (<s>, <t>) end class <c>;

The definition of class <c> would be valid if it appeared in the same library as 
the preceding definitions or in a library used by them, but invalid if it appeared 
in a different library.  The reason is that without the definition of <c>, the 
method defined on m is not within the domain declared by the define 
inert domain, but with the definition of <c> the method is within that 
domain.

Rationale 9

define inert domain permits the compiler to assume certain properties of 
the program which can be computed based on explicitly known classes and 
methods, with a guarantee that an attempt to violate any of those assumptions 
will be detected.
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The goal of rule 3 is that the creation of the class C must not make any method 
M applicable to a part of the inert domain to which it was not previously 
applicable.

The “potentially blocks” concept describes the mechanism for testing whether 
the set of objects that are instances of both Si and Ti (i.e. to which the method is 
applicable at the ith argument position and that are within the inert domain at 
that argument position) would change as a result of creating C.  By specifying 
what valid programs are allowed to do, rule 3 implicitly specifies the 
assumptions a compiler can make.  A define inert domain definition 
accomplishes this by permitting the compiler to eliminate some of the known 
methods on a generic function from the set of methods that might be applicable 
to a particular call at runtime. For example, if this leaves exactly one applicable 
method, the compiler can eliminate a run-time method dispatch and consider 
additional optimizations such as inlining.

Specifically, suppose the compiler is compiling a call to G and has determined 
that the argument at position i is an instance of some type U (where U is not 
necessarily a standard Dylan type, but could instead be a compiler-internal 
extension to the type system, such as a difference of two types).  For the 
compiler to be able to rely on the define inert domain definition, U must 
be a subtype of Ti.  For the compiler to determine that M is not applicable, U 
must be disjoint with Si.  Creating C can't change whether U is a subtype of Ti, 
but it can change whether U is disjoint with Si.  If there could be an object that 
is simultaneously an instance of U, C, and Si, it would violate the compiler's 
assumption that M is not applicable in the call to G, and therefore creating C 
would be a sealing violation.  If there can't be such an object, then creating C is 
allowed.

This maps onto rule 3 as follows (ignoring for the moment the added 
complication of limited types that lead to the use of the pseudosubtype 
relationship rather than subtype):

U is a subtype of Dk and therefore is a subtype of Ti, because subtype is 
transitive.

Dk is not a subtype of Si, because if it were then U could not be disjoint from Si.

Dj is a subtype of Si.

If U and C would have a non-empty intersection, then the creation of C must be 
prevented, else U would no longer be disjoint from Si.  One possible U is the set 
of all general instances of Dk that are not also general instances of any of the 
explicitly known direct subclasses of Dk.  That U would indeed have a 
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non-empty intersection with C.  The existence of this U makes the proposed 
rule 3 necessary.

Rule 3 does not need to address the possibility of multiple inheritance being 
used to combine classes involved in the element types of limited collection 
classes.  Changes to the disjointness relationships between element types does 
not affect the relationships between collection types with those element types.

Pseudosubtype Examples 9

Suppose A and B are disjoint subclasses of <collection>, Si is limited(A, 
of: T), and Ti is limited(B, of: T).  Thus, Si and Ti are disjoint and M is 
outside the inert domain.  If C inherits from A and B it should be potentially 
blocked by M, because an instance of limited(C, of: T) would be an 
instance of both Si and Ti.  Since B is not a subtype of Ti, there would be no 
blockage if the constraints in rule 3 were defined in terms of subtype.  
However, B is a pseudosubtype of Ti, so specifying rule 3 using the 
pseudosubtype relationship correctly causes M to potentially block C.

Suppose Si is limited(<stretchy-vector>, of: <integer>) and Ti is 
limited(<sequence>, of: <integer>).  Attempt to create 
<stretchy-string>, a direct subclass of <stretchy-vector> and 
<string>.  The element-type of <stretchy-string> must be a subtype of 
<character>, therefore, assuming <integer> and <character> are 
disjoint, <stretchy-string> is disjoint from both Si and Ti, and so is not 
blocked.  This example shows the need for the non-disjointness requirement in 
the definition of pseudosubtype.

Abbreviations for Define Inert Domain 9

define inert method defines a method on a generic function and also seals 
the generic function for the types that are the specializers of the method. 

The following two program fragments are equivalent: 

define inert method insert (source :: <list>, i :: <object>)
  => (result :: <list>)
  …
end method insert;

and
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define method insert (source :: <list>, i :: <object>)

  => (result :: <list>)

  …

end method insert;

define inert domain insert (<list>, <object>);

The inert slot option to define class defines a slot and also makes the 
getter generic function inert over the class, and the setter generic function, if 
there is one, inert over the type of the slot and the class.

The following two program fragments are equivalent:

define class <polygon> (<shape>)

  inert slot sides :: <integer>, required-init-keyword: sides:;

end class <polygon>;

and

define class <polygon> (<shape>)

  slot sides :: <integer>, required-init-keyword: sides:;

end class <polygon>;

define inert domain sides (<polygon>);

define inert domain sides-setter (<polygon>, <integer>);

Implied Restrictions on Method Definitions 9

To avoid potential sealing violations among separately developed libraries, one 
of the following conditions should be true for every method M defined in a 
library L:

■ Either the generic function to which M is added should be defined in the 
library L, or

■ One of the specializers of M should be a subtype of a type defined in library 
L.

The following example illustrates why this condition is necessary.

Library L1 defines and exports the following:
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define generic g (x)

define class <c1> (<object>) end class <c1>;

Library L2 uses L1 and defines the following

define class <c2> (<c1>) end class <c2>;

define method g (x :: <c2>) end method;

define inert domain g (<c2>)

Library L3 uses L1 and defines the following

define method g (x :: <c>) end method;

Libraries L2 and L3 are developed independently, and have no knowledge of 
each other.  An application that attempts to use both L2 and L3 contains a 
sealing violation.  L2 is clearly valid.  Therefore, L3 is at fault for the sealing 
violation.  Because the compiler cannot prove that use of L3 will lead to an error 
(and indeed, it will only lead to an error in the presence of L2), it is appropriate 
to issue a warning but not disallow the compilation of L3.
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Macros 10

 

Overview 10

 

A 

 

macro

 

 is an extension to the core language that can be defined by the user, by 
the implementation, or as part of the Dylan language specification.  Much of 
the grammatical structure of Dylan is built with macros.  A macro defines the 
meaning of one construct in terms of another construct.  The compiler 
substitutes the new construct for the original.  The purpose of macros is to 
allow programmers to extend the Dylan language, for example by creating new 
control structures or new definitions.  Unlike C, Dylan does not intend macros 
to be used to optimize code by inlining.  Other parts of the language, such as 
sealing and 

 

define constant

 

, address that need.

Throughout this chapter, 

 

italic font

 

 and 

 

SMALL

 

 

 

CAPS

 

 are used to indicate 
references to the formal grammar given in Appendix A, “BNF.”

 

Compilation and Macro Processing 10

 

Compilation consists of six conceptual phases:

1. Parsing a stream of characters into tokens, according to the lexical grammar 
in Appendix A, “BNF.”

2. Parsing a stream of tokens into a program, according to the phrase grammar 
in Appendix A, “BNF.”

3. Macro expansion, which translates the program to a core language.

4. Definition processing, which recognizes special and built-in definitions and 
builds a compile-time model of the static structure of the program.

5. Optimization, which rewrites the program for improved performance.

6. Code generation, which translates the program to executable form.

Portions of a program can be macro calls.  Macro expansion replaces a macro 
call with another construct, which can itself be a macro call or contain macro 
calls.   This expansion process repeats until there are no macro calls remaining 
in the program, thus macros have no space or speed cost at run time.  Of 
course, expanding macros affects the speed and space cost of compilation.

 

 

This document was created with FrameMaker 4.0.4
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Overview

 

A macro definition describes both the syntax of a macro call and the process for 
creating a new construct to replace the macro call.  Typically the new construct 
contains portions of the old one, which can be regarded as arguments to the 
macro.  A macro definition consists of a sequence of rewrite rules.  The 
left-hand side of each rule is a pattern that matches a macro call.  The 
right-hand side is a template for the expansion of a matching call.  Pattern 
variables appearing in the left-hand side act as names for macro arguments.  
Pattern variables appearing in the right-hand side substitute arguments into 
the expansion.  Macro arguments can be constrained to match specified 
elements of the Dylan grammar.  Auxiliary rule sets enhance the rewrite rule 
notation with named subrules.

Some implementations and a future version of the Dylan language 
specification might allow macro expansions to be produced by compile-time 
computation using the full Dylan language and an object-oriented 
representation for programs.  Such a “procedural macro” facility is not part of 
Dylan at this time.

The input to, and output from, macro expansion is a fragment, which is a 
sequence of elementary fragments.  An elementary fragment is one of the 
following:

 

■

 

A token: the output of the lexical grammar.  The bracket tokens 

 

(

 

, 

 

)

 

, 

 

[

 

, 

 

]

 

, 

 

{

 

, 

 

}

 

, 

 

#(

 

, and 

 

#[

 

 are not allowed.  Core reserved words (except 

 

otherwise

 

), 

 

BEGIN

 

-

 

WORDS

 

, and 

 

FUNCTION

 

-

 

WORDS

 

 are not allowed unless quoted with 
backslash.

 

■

 

A bracketed fragment: balanced brackets ( 

 

()

 

, 

 

[]

 

, or 

 

{}

 

 ) enclosing a 
fragment.

 

■

 

A macro call fragment: a macro call.

 

■

 

A parsed fragment: a single unit that is not decomposable into its 
component tokens.  It has been fully parsed by the phrase grammar.  A 
parsed fragment is either an expression, a definition, or a local declaration.

The second and third phases of compilation (parsing and macro expansion) are 
interleaved, not sequential.  The parsing phase of the compiler parses a macro 
call just enough to find its end.  See 

 

definition-macro-call, statement, 
function-macro-call, body-fragment, list-fragment,

 

 

 

 

 

and

 

 basic-fragment

 

  in Appendix 
A, “BNF.” This process of parsing a macro call also parses any macro calls 
nested inside it.   The result is a macro call fragment.
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This loose grammar for macro calls gives users a lot of flexibility to choose the 
grammar that their macros will accept.  For example, the grammar of macro 
calls doesn't care whether  a bracketed fragment will be interpreted as an 
argument list, a parameter list, a set of 

 

for

 

 clauses, or a module import list.

The compiler can compute the expansion of a macro call fragment immediately, 
or delay computing it until it is needed.  When the compiler computes the 
expansion of a macro call fragment, it obeys the macro's definition.  Constraints 
on pattern variables can cause reparsing of portions of the macro call.

A 

 

constituent

 

, 

 

operand

 

, or 

 

leaf

 

  that is a macro call expands the macro some time 
before the definition processing and optimization phases.  The compiler 
brackets the expansion in 

 

begin

 

 … 

 

end

 

, using the standard binding of 

 

begin

 

 
in the Dylan module, and then reparses it as a 

 

statement

 

.  This reparsing may 
discover more macro calls.  A parse error while reparsing a macro expansion 
could indicate an invalid macro definition or an incorrect call to the macro that 
was not detected during pattern matching.  Once the cycle of macro expansion 
and reparsing has been completed, no tokens, bracketed fragments, or macro 
call fragments remain and the entire source record has become one parsed 
fragment.

This 

 

begin

 

 … 

 

end

 

 bracketing ensures that the expansion of a macro call will 
not be broken apart by operator precedence rules when the macro call is a 
subexpression.  Similarly it ensures that the scopes of local declarations 
introduced by a macro will not extend outside that macro expansion when the 
macro call is a statement in a body. 

The fragment produced by parsing a macro call, which is the input to macro 
expansion, looks like this:

 

■

 

Local declarations and special definitions are parsed fragments.

 

■

 

Calls to macros are macro call fragments.

 

■

 

List constants and vector constants are parsed expression fragments.

 

■

 

Anything in brackets is a bracketed fragment.

 

■

 

If the macro call was not the result of macro expansion, everything else is 
represented as sequences of tokens.  There are a few restrictions on the 
tokens, for example semicolons must appear in certain places and bare 
brackets cannot appear; for details see the definition of 

 

body-fragment

 

  and 

 

list-fragment

 

  in Appendix A, “BNF.”
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■

 

In a macro call that is the result of macro expansion, additional items can be 
parsed fragments, due to pattern-variable substitution.

 

■

 

Many built-in macros expand into implementation-specific parsed 
fragments.

The parser recognizes parsed fragments as well as raw tokens.  The 
nonterminals 

 

expression,

 

 

 

definition,

 

 and 

 

local-declaration

 

  in the phrase grammar 
accept parsed fragments of the same kind.  The nonterminal 

 

constant

 

  accepts 
parsed expression fragments that are constants.  The nonterminals 

 

ORDINARY

 

-

 

NAME

 

 and 

 

NAME

 

 accept parsed expression fragments that are named 
value references.  The nonterminal 

 

operand

 

  accepts all parsed expression 
fragments.  The nonterminals 

 

macro

 

, 

 

definition-macro-call

 

, 

 

statement

 

, and 

 

function-macro-call

 

  accept macro call fragments.

 

Extensible Grammar 10

 

There are three kinds of macros: definition macros, which extend the available 
set of definitions; statement macros, which extend the available set of 
statements; and function macros, which syntactically resemble function calls 
but are more flexible.  Named value references and local declarations cannot be 
macro calls.  Only statements, function calls, and definitions are extensible.

 

Definition Macros 10

 

A definition macro extends the 

 

definition-macro-call 

 

production of the Dylan 
phrase grammar to recognize additional constructs as valid definitions, by 
creating a new 

 

DEFINE

 

-

 

BODY

 

-

 

WORD

 

 

 

that is recognized by the following grammar 
line:

 

definition-macro-call:

 

   define

 

  modifiers

 

opt

 

  

 

DEFINE

 

-

 

BODY

 

-

 

WORD

 

  body-fragment

 

opt

 

 

 

definition-tail

 

or by creating a new 

 

DEFINE

 

-

 

LIST

 

-

 

WORD

 

 

 

that is recognized by the following 
grammar line:

 

definition-macro-call:

 

   

 

define

 

  modifiers

 

opt

 

  

 

DEFINE

 

-

 

LIST

 

-

 

WORD

 

  list-fragment

 

opt
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This allows programmers to extend Dylan by defining new kinds of 
definitions.  The syntax of the definition must be parseable by one of these two 
predefined grammar rules.  The first handles body-style definitions like 

 

define class

 

, 

 

define method

 

, and 

 

define module

 

,  while the second 
handles list-style definitions like 

 

define constant

 

.  See Appendix A, “BNF,” 
for the details.

The new 

 

DEFINE

 

-BODY-WORD  or DEFINE-LIST-WORD  becomes a partially 
reserved word in each module where the macro definition is visible.  In 
particular a DEFINE-BODY-WORD  or DEFINE-LIST-WORD  cannot be used as a 
modifier in a definition.  It can still be used as a variable-name.

Statement Macros 10

A statement macro extends the statement production of the Dylan phrase 
grammar to recognize additional constructs as valid statements, by creating a 
new BEGIN-WORD that is recognized by the following grammar line:

statement:
   BEGIN-WORD  body-fragmentopt end-clause

The new BEGIN-WORD becomes a reserved word in each module where the 
macro definition is visible.  It can only be used at the beginning and end of this 
new statement.

Function Macros 10

A function macro extends the function-macro-call production of the Dylan 
phrase grammar to recognize additional constructs, by creating a new 
FUNCTION-WORD that is recognized by the following two grammar lines:

function-macro-call:
   FUNCTION-WORD  (  body-fragmentopt )
   FUNCTION-WORD  (  body-fragmentopt ) := expression  

The new FUNCTION-WORD becomes a reserved word in each module where the 
macro definition is visible.  It can only be used at the beginning of a macro call.

A function-macro-call  containing an assignment operator,

FUNCTION-WORD  (  body-fragmentopt  ) := expression
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becomes

begin let temp = expression ;
FUNCTION-WORD-setter ( temp,  body-fragmentopt  );

temp

end

where FUNCTION-WORD-setter  is FUNCTION-WORD  with a “-setter” suffix 
and temp is a unique name. If the body-fragment  is missing then the comma 
preceding it is omitted.  Assignment does not expand a macro call on the 
left-hand side. 

To simplify its presentation, the grammar in Appendix A, “BNF,” is 
ambiguous.  A function-macro-call  containing an assignment operator could 
also be parsed as an expression consisting of the first form of 
function-macro-call, followed by := and further binary-operands and 
BINARY-OPERATORS. This alternative parse is disallowed.

Macro Names 10

A macro is named by a constant module binding.  The macro is available to be 
called in any scope where this binding is accessible.  Macro names can be 
exported and can be renamed during module importing just like any other 
module binding.  Macro bindings are constant and cannot be changed by the 
assignment operator :=.

The name bound to a definition macro is the macro’s DEFINE-BODY-WORD or 
DEFINE-LIST-WORD suffixed by “-definer”.  This suffixing convention is 
analogous to the naming convention for setters and allows the 
DEFINE-BODY-WORD or DEFINE-LIST-WORD to be used for another purpose.  The 
name bound to a statement macro is the macro's BEGIN-WORD.  The name 
bound to a function macro is the macro's FUNCTION-WORD.

A named value reference is not allowed when the value of the binding is a 
macro, because macros are not run-time objects. 

A macro cannot be named by a local binding.  Macro definitions are always 
scoped to modules.
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Attempting to create a local binding that shadows a binding to a macro is an 
error.

Reserved words created by a macro definition are reserved in any module 
where the binding that names the macro is accessible.  In other modules, the 
same words are ordinary names. Each module has an associated syntax table 
which is used when parsing code associated with that module.  The syntax 
table controls the lexical analyzer's assignment of names to the 
DEFINE-BODY-WORD, DEFINE-LIST-WORD, BEGIN-WORD, and FUNCTION-WORD 
categories.  Importing a macro into a module makes the same modifications to 
that module's syntax table that would be made by defining that macro in the 
module.  If a definition macro is renamed when it is imported, the 
DEFINE-BODY-WORD or DEFINE-LIST-WORD derives from the new name.  If the 
new name does end in “-definer”, the imported macro cannot be called.

A NAME or UNRESERVED-NAME in the lexical grammar can be a backslash ('\') 
character followed by a word.  This prevents the word from being recognized 
as a reserved word during parsing, but does not change which binding the 
word names.  Quoting the name of a statement or function macro with a 
backslash allows the name to be mentioned without calling the macro, for 
example to export it from a module.

When a binding that names a macro is exported from a module that is exported 
from a library, clients of that library can call the macro.  Information derived 
from the macro definition goes into the library export information part of the 
library description.

Rewrite Rules 10

The grammar of a macro definition is define  macro  macro-definition.  For 
details see Appendix A, “BNF.”

If the optional NAME at the end of a macro-definition is present, it must be the 
same NAME that appears at the beginning of the macro-definition.

The kind of macro being defined, and thus the Dylan grammar production that 
this macro extends, is determined by which kind of rules appear in the macro’s 
main-rule-set.  

The NAME  preceding the main-rule-set is the name of the binding whose value 
is this macro.  It must be consistent with each left-hand side of the 



C H A P T E R  1 0  

Macros

148 Patterns

main-rule-set.  It can be any name, even a reserved word or backslash followed 
by an operator.  For statement and function macros this NAME  must be the 
same as the NAME  that appears as the first token in each main-rule-set pattern.  
For definition macros this NAME  must be the same as the NAME  in the 
xxx-style-definition-rule  with the suffix “-definer” added.

A NAME can belong to more than one of the lexical categories BEGIN-WORD, 
FUNCTION-WORD, DEFINE-BODY-WORD, and DEFINE-LIST-WORD.  A NAME  cannot 
belong to both BEGIN-WORD and FUNCTION-WORD.  A NAME  cannot belong to 
both DEFINE-BODY-WORD and DEFINE-LIST-WORD.

For simplicity of documentation, the xxx-style-definition-rule productions are 
written ambiguously.  The NAME  in the left-hand side of the rule must be the 
NAME immediately following define macro with the “-definer” suffix 
removed, not an arbitrary NAME, which would be ambiguous with modifier.

The general idea is that the main-rule-set is an ordered sequence of rewrite 
rules.  Macro expansion tests the macro call against each left-hand side in turn 
until one matches.  The corresponding right-hand side supplies the new 
construct to replace the macro call.  The left- and right-hand sides can contain 
pattern variables.  The portion of the macro call that matches a particular 
pattern variable on the left replaces each occurrence of that pattern variable on 
the right.  It is an error for the right-hand side of a rule to contain a pattern 
variable that does not appear on the left-hand side of the same rule.

If none of the left-hand sides match, the macro call is invalid.  If more than one 
left-hand side matches, the first matching rule is used.

The punctuation marks ?, ??, and ?= used in patterns and templates are 
customarily written without any whitespace following them.

Patterns 10

Approximately speaking, a pattern looks like the construct that it matches, but 
contains pattern variables that bind to portions of the construct.  Hence a 
left-hand side in the main-rule-set looks like a macro call.  However, the 
grammar of patterns is not the same as the grammar of programs, but contains 
just what is required to match the portions of the Dylan grammar that are 
extensible by macros.  Patterns have a simple nested grammar, with 
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semicolons, commas, and brackets used to indicate levels of nesting.  See the 
definition of pattern in Appendix A, “BNF.”

A pattern matches a fragment (a sequence of elementary fragments) by 
executing the following algorithm from left to right.  It is easy to create patterns 
that are ambiguous when considered as grammars. This ambiguity is resolved 
by the left to right processing order and the specified try-shortest-first order for 
matching wildcards.  Pattern matching succeeds only if all sub-patterns match.  
If pattern matching fails, the current rule fails and control passes to the next 
rule in the current rule set.  If all patterns in a rule set fail to match, the macro 
call is invalid.

Multiple occurrences of the same pattern variable name in a single rule's 
left-hand side are not valid.

A pattern  matches a fragment as follows:

■ If the pattern consists of just one pattern-list, go to the next step.  Otherwise 
divide the pattern into subpatterns and the fragment into subfragments at 
semicolons, and match subpatterns to subfragments individually in order.  
The subpatterns and subfragments do not include the semicolons that 
separate them.  Suppose the pattern consists of N + 1 pattern-lists separated 
by N semicolons.  Locate the first N semicolons in the fragment (without 
looking inside of elementary fragments) and divide up the fragment into 
subfragments accordingly. The match fails if the fragment contains fewer 
than N - 1 semicolons. As a special case, if the fragment contains N - 1 
semicolons, the match still succeeds and the last subfragment is empty.  If 
the fragment contains more than N semicolons, the extra semicolons will be 
in the last subfragment.

A pattern-list  matches a fragment as follows:

■ If the pattern-list consists of just a pattern-sequence, go to the next step.  If 
the pattern-list consists of just a property-list-pattern, go to that step.  
Otherwise divide the pattern-list into subpatterns and the fragment into 
subfragments at commas, and match subpatterns to subfragments 
individually in order.  The subpatterns and subfragments do not include the 
commas that separate them.  Suppose the pattern consists of N + 1 
subpatterns separated by N commas.  Locate the first N commas in the 
fragment (without looking inside of elementary fragments) and divide up 
the fragment into subfragments accordingly. The match fails if the fragment 
contains fewer than N - 1 commas. As a special case, if the fragment contains 
N - 1 commas, the match still succeeds and the last subfragment is empty.  If 
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the fragment contains more than N commas, the extra commas will be in the 
last subfragment.  Note that the subdivision algorithms for commas and 
semicolons are identical.

A pattern-sequence  matches a fragment as follows:

■ Consider each simple-pattern in the pattern-sequence in turn from left to 
right.  Each simple-pattern matches an initial subsequence of the fragment 
and consumes that subsequence, or fails.  The entire pattern match fails if 
any simple-pattern fails, if the fragment is empty and the simple-pattern 
requires one or more elementary fragments, or if the fragment is not entirely 
consumed after all simple-patterns have been matched.  There is a special 
backup and retry rule for wildcards, described below.

A simple-pattern  matches a fragment as follows:

■ A NAME or => consumes one elementary fragment, which must be identical 
to the simple-pattern.  A NAME matches a name that is spelled the same, 
independent of modules, lexical scoping issues, alphabetic case, and 
backslash quoting.  As a special case, after the word otherwise, an => is 
optional in both the pattern and the fragment. Presence or absence of the 
arrow in either place makes no difference to matching. 

■ A bracketed-pattern matches and consumes a bracketed-fragment.  If the 
enclosed pattern is omitted, the enclosed body-fragment must be empty, 
otherwise the enclosed pattern must match the enclosed body-fragment  
(which can be empty).  The type of brackets ( (), [], or {} ) in the 
bracketed-fragment  must be the same as the type of brackets in the 
bracketed-pattern.

A binding-pattern  matches a fragment as follows:

■ pattern-variable  :: pattern-variable  consumes as much of the fragment as 
can be parsed by the grammar for variable.  It matches the first 
pattern-variable to the variable-name and the second to the type, a parsed 
expression fragment.  If no specializer is present, it matches the second 
pattern-variable to a parsed expression fragment that is a named value 
reference to <object> in the Dylan module.  This matching checks the 
constraints on the pattern variable, fails if the constraint is not satisfied, and 
binds the pattern variable to the fragment.

■ pattern-variable = pattern-variable  consumes as much of the fragment as can 
be parsed by the grammar for variable = expression.  It matches the first 
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pattern-variable to the variable, a fragment, and the second to the expression, 
a parsed expression fragment.

■ pattern-variable :: pattern-variable = pattern-variable  consumes as much of 
the fragment as can be parsed by the grammar for variable = expression.  It 
matches the first two pattern-variables the same as the first kind of 
binding-pattern and it matches the third pattern-variable the same as the 
second kind of binding-pattern.

A pattern-variable  matches a fragment as follows:

■ When the constraint is a wildcard constraint (see “Pattern Variable 
Constraints” on page 154), the pattern variable consumes some initial 
subsequence of the fragment, using a backup and retry algorithm. First, the 
wildcard consumes no elementary fragments, and matching continues with 
the next simple-pattern in the pattern-sequence. If any simple-pattern in the 
current pattern-sequence fails to match, back up to the wildcard, consume one 
more elementary fragment than before, and retry matching the rest of the 
pattern-sequence, starting one elementary fragment to the right of the 
previous start point.  Once the entire pattern-sequence has successfully 
matched, the pattern variable binds to a fragment consisting of the sequence 
of elementary fragments that it consumed.

■ It is an error for more than one of the simple-patterns directly contained in a 
pattern-sequence to be a wildcard.

■ When the constraint is other than a wildcard constraint, the pattern variable 
consumes as much of the fragment as can be parsed by the grammar 
specified for the constraint in “Pattern Variable Constraints” on page 154.  If 
the parsing fails, the pattern match fails.  The pattern variable binds to the 
fragment specified in “Pattern Variable Constraints.”  This can be a parsed 
fragment rather than the original sequence of elementary fragments.

■ The ellipsis pattern-variable, ..., can only be used in an auxiliary rule set.  It 
represents a pattern variable with the same name as the current rule set and 
a wildcard constraint.

A property-list-pattern  matches a fragment as follows:

■ Parse the fragment using the grammar for property-listopt .  If the parsing fails 
or does not consume the entire fragment, the pattern match fails.

■ If the property-list-pattern contains #key and does not contain #all-keys, 
the match fails if the SYMBOL part of any property is not the NAME in some 
pattern-keyword  in the property-list-pattern.  Comparison of a SYMBOL to a 
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NAME is case-insensitive, ignores backslash quoting, and is unaffected by the 
lexical context of the NAME.

■ If the property-list-pattern contains #rest, bind the pattern variable 
immediately following #rest to the entire fragment.  If the pattern variable 
has a non-wildcard constraint, parse the value part of each property 
according to this constraint, fail if the parsing fails or does not consume the 
entire value part, and substitute the fragment specified in “Pattern Variable 
Constraints” on page 154 for the value part.

■ Each pattern-keyword in the property-list-pattern binds a pattern variable as 
follows: 

 

n A single question mark finds the first property whose SYMBOL is the NAME 
of the pattern-keyword .  Comparison of a SYMBOL to a NAME is 
case-insensitive, ignores backslash quoting, and is unaffected by the 
lexical context of the NAME.  If the pattern-keyword  has a non-wildcard 
constraint, parse the property's value  according to this constraint, fail if 
the parsing fails or does not consume the entire value , and bind the 
pattern variable to the fragment specified in “Pattern Variable 
Constraints” on page 154.  If the pattern-keyword  has a wildcard 
constraint, bind the pattern variable to the property's value .

 

n A double question mark finds every property with a matching SYMBOL, 
processes each property's value as for a single question mark, and binds 
the pattern variable to a sequence of the values, preserving the order of 
properties in the input fragment.  This sequence can only be used with 
double question mark in a template.  Constraint-directed parsing applies 
to each property value individually.

■ If a single question mark pattern-keyword does not find any matching 
property, then if a default is present, the pattern variable binds to the default 
expression, otherwise the property is required so the pattern match fails.

■ If a double question mark pattern-keyword  does not find any matching 
property, then if a default is present, the pattern variable binds to a sequence 
of one element, the default expression, otherwise the pattern variable binds 
to an empty sequence.  

■ Note: the default expression in a pattern-keyword  is not evaluated during 
macro expansion; it is a parsed expression fragment that is used instead of a 
fragment from the macro call.  The default is not subject to a pattern variable 
constraint.
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Special Rules for Definitions 10

A list-style definition parses as the core reserved word define, an optional 
sequence of modifiers, a DEFINE-LIST-WORD, and a possibly-empty list-fragment.  
The left-hand side of a list-style-definition-rule  matches this by treating the 
definition-head as a pattern-sequence and matching it to the sequence of 
modifiers, and then matching the pattern to the list-fragment.  If no 
definition-head is present, the sequence of modifiers must be empty. If no pattern  
is present, the list-fragment must be empty.  The word define and the 
DEFINE-LIST-WORD do not participate in the pattern match because they were 
already used to identify the macro being called and because the spelling of the 
DEFINE-LIST-WORD might have been changed by renaming the macro during 
module importing.

A body-style definition parses as the core reserved word define, an optional 
sequence of modifiers, a DEFINE-BODY-WORD, a possibly-empty body-fragment, 
the core reserved word end, and optional repetitions of the DEFINE-BODY-WORD 
and the NAME (if any) that is the first token of the body-fragment.  The left-hand 
side of a body-style-definition-rule matches this by treating the definition-head as a 
pattern-sequence and matching it to the sequence of modifiers, and then 
matching the pattern to the body-fragment.   If no definition-head is present, the 
sequence of modifiers must be empty. If no pattern is present, the body-fragment 
must be empty.  If the body-fragment ends in a semicolon, this semicolon is 
removed before matching.  The optional semicolon in the rule is just decoration 
and does not participate in the pattern match.  The word define and the 
DEFINE-BODY-WORD do not participate in the pattern match because they were 
already used to identify the macro being called and because the spelling of the 
DEFINE-BODY-WORD might have been changed by renaming the macro during 
module importing.  The word end and the two optional items following it in 
the macro call are checked during parsing, and so do not participate in the 
pattern match.

It is an error for a definition-head  to contain more than one wildcard.

Special Rules for Statements 10

A statement parses as a BEGIN-WORD, a possibly-empty body-fragment, the core 
reserved word end, and an optional repetition of the BEGIN-WORD.  The 
left-hand side of a statement-rule matches this by matching the pattern to the 
body-fragment.  If the rule does not contain a pattern, the body-fragment  must be 
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empty.  If the body-fragment ends in a semicolon, this semicolon is removed 
before matching.  The optional semicolon in the rule is just decoration and does 
not participate in the pattern match.  The BEGIN-WORD does not participate in 
the pattern match because it was already used to identify the macro being 
called and because its spelling might have been changed by renaming the 
macro during module importing.  The word end and the optional item 
following it in the macro call are checked during parsing, and so do not 
participate in the pattern match.

Special Rules for Function Macros 10

A call to a function macro parses as a FUNCTION-WORD followed by a 
parenthesized, possibly-empty body-fragment.  The left-hand side of a 
function-rule matches this by matching the pattern to the body-fragment.  If the 
rule does not contain a pattern, the body-fragment must be empty.  The 
FUNCTION-WORD does not participate in the pattern match because it was 
already used to identify the macro being called and because its spelling might 
have been changed by renaming the macro during module importing.  The 
parentheses in the rule are just decoration and do not participate in the pattern 
match.

Pattern Variable Constraints 10

Each pattern-variable  in the left-hand side of a rule in a macro definition has a 
constraint associated with it.  This prevents the pattern from matching unless 
the fragment matched to the pattern-variable satisfies the constraint.  In most 
cases it also controls how the matching fragment is parsed.

You specify a constraint in a pattern-variable  by suffixing a colon and the 
constraint name to the pattern variable name.  Intervening whitespace is not 
allowed.  As an abbreviation, if a pattern variable has the same name as its 
constraint, the pattern-variable  can be written ?:the-name  instead of 
?the-name:the-name.
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The following constraints are available:

Notes:

1. Where expression, operand, constituents or body  appears in the grammar that 
this constraint accepts, the bound fragment contains a parsed expression 
fragment, not the original elementary fragments.

2. Parsing stops at an intermediate word.

3. The body is wrapped in begin … end to make it an expression, using the 
standard binding of begin in the Dylan module.  An empty body defaults 
to #f.

4. A pattern-variable with a macro constraint accepts exactly one elementary 
fragment, which must be a macro call fragment.  It binds the pattern variable 
to the expansion of the macro.

Some implementations and a future version of the Dylan language 
specification might add more constraint choices to this table.

When a pattern variable has the same name as an auxiliary rule-set, its 
constraint defaults to wildcard and can be omitted.  Otherwise a constraint 
must be specified in every pattern-variable and pattern-keyword.

Table 10-1 Available constraints

Constraint name Grammar accepted Binds pattern variable to

expression expression parsed expression 
fragment

variable variable fragment(1)

name NAME one-token fragment

token TOKEN one-token fragment

body bodyopt   (2) parsed expression 
fragment (3)

case-body case-bodyopt   (2) fragment(1)

macro macro fragment(4)

* (wildcard) fragment
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A constraint applies only to the specific pattern variable occurrence to which it 
is attached.  It does not constrain other pattern variable occurrences with the 
same name. 

Intermediate Words 10

When a pattern-variable  has a constraint of body or case-body, its parsing of 
the fragment stops before any token that is an intermediate word.  This allows 
intermediate words to delimit clauses that have separate bodies, like else and 
elseif in an if statement.  The intermediate words of a macro are identified 
as follows:

■ Define a body-variable to be a pattern variable that either has a constraint of 
body or case-body, or  names an auxiliary rule-set where some left-hand 
side in that rule-set ends in a body-variable. This is a least fixed point,  so a 
recursive auxiliary rule-set does not automatically make its name into a 
body-variable!  Note that an ellipsis that stands for a pattern variable is a 
body-variable when that pattern variable is one.

■ Define an intermediate-variable to be a pattern variable that either 
immediately follows a body-variable in a left-hand side, or appears at the 
beginning of a left-hand side in an auxiliary rule-set named by an 
intermediate-variable. 

■ An intermediate word is a NAME that either immediately follows a 
body-variable in a left-hand side, or occurs at the beginning of a left-hand 
side in an auxiliary rule-set named by an intermediate-variable. 
Intermediate words are not reserved, they are just used as delimiters during 
the parsing for a pattern-variable  with a body or case-body constraint.

Templates 10

Approximately speaking, a template has the same structure as what it 
constructs, but contains pattern variables that will be replaced by fragments 
extracted from the macro call.  Thus a template in the main-rule-set  looks like 
the macro expansion.

However, templates do not have a full grammar.  A template is essentially any 
sequence of tokens and substitutions in which all of Dylan’s brackets are 
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balanced: (), [], {}, #(), and #[].  Substitution for pattern variables 
produces a sequence of tokens and other elementary fragments.  

Note that using unparsed token sequences as templates allows a macro 
expansion to contain macro calls without creating any inter-dependencies 
between macros.  Since the template is not parsed at macro definition time, any 
macros called in the template do not have to be defined first, and macros can be 
compiled independently of each other.  This simplifies the implementation at 
the minor cost of deferring some error checking from when a macro is defined 
until the time when the macro is called.

The grammar for templates is the definition of template  in “Templates” on 
page 415.

All template-elements  other than substitution  are copied directly into the macro 
expansion.  The various kinds of substitution  insert something else into the 
macro expansion, as follows:

? NAME The fragment bound to the pattern variable named NAME.

name-prefixopt ? name-string-or-symbol name-suffixopt  

The fragment bound to the pattern variable named 
name-string-or-symbol, converted to a string or symbol and/or 
concatenated with a prefix and/or suffix.  Note that this rule 
applies only when the first rule does not.  The fragment must be 
a NAME.  Concatenate the prefix, if any, the characters of the 
fragment, and the suffix, if any.  The alphabetic case of the 
characters of the fragment is unspecified.  Convert this to the 
same grammatical type (NAME, STRING, or SYMBOL) as 
name-string-or-symbol.  When the result is a NAME, its hygiene 
context is the same as that of the fragment.

?? NAME  separatoropt ...

The sequence of fragments bound to the pattern variable named 
NAME, with separator inserted between each pair of fragments.  
The pattern variable must have been bound by a ?? 
pattern-keyword. Separator can be a binary operator, comma, or 
semicolon.  If the size of the sequence is 1 or separator is omitted, 
no separator is inserted.  If the sequence is empty, nothing is 
inserted.

... The fragment bound to the pattern variable that names this rule 
set; this is only valid in an auxiliary rule set.
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?= NAME A reference to NAME, in the lexical context where the macro 
was called.

It is an error for a single question-mark substitution  to use a pattern variable 
that was bound by a double question-mark pattern-keyword. 

It is an error for a double question-mark substitution  to use a pattern variable 
that was bound by a single question-mark pattern-variable or pattern-keyword. 

It is an error for a substitution to use a pattern variable that does not appear on 
the left-hand side of the same rule.

When a template contains a separator immediately followed by a substitution, 
and the fragment inserted into the macro expansion by the substitution is 
empty, the separator is removed from the macro expansion.

Auxiliary Rule Sets 10

Auxiliary rule sets are like subroutines for rewrite rules.  An auxiliary rule set 
rewrites the value of a pattern variable after it is bound by a pattern and before 
it is substituted into a template.  Auxiliary rule sets only come into play after a 
pattern has matched; the failure of all patterns in an auxiliary rule set to match 
causes the entire macro call to be declared invalid, rather than back-tracking 
and trying the next pattern in the calling rule set.

See the definition of auxiliary-rule-sets in “Auxiliary Rule Sets” on page 416.

A SYMBOL flags the beginning of an auxiliary rule set.  For readability it is 
generally written as name: rather than #"name".  The name of the symbol is 
the same as the name of the pattern variable that is rewritten by this auxiliary 
rule set.  All occurrences of this pattern variable in all rule sets are rewritten.  A 
pattern variable can occur in the very auxiliary rule set that rewrites that 
pattern variable; this is how you write recursive rewrite rules, which greatly 
expand the power of pattern-matching.

When an auxiliary rule set's pattern variable occurs in a double question-mark 
pattern-keyword, the auxiliary rule set rewrites each property value in the 
sequence individually.

The order of auxiliary rule sets in a macro definition is immaterial.
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The ellipsis ... in patterns and templates of an auxiliary rule set means 
exactly the same thing as the pattern variable that is rewritten by this auxiliary 
rule set.  Using ellipsis instead of the pattern variable can make recursive 
rewrite rules more readable. 

Hygiene 10

Dylan macros are always hygienic. The basic idea is that each named value 
reference in a macro expansion means the same thing as it meant at the place in 
the original source code from which it was copied into the macro expansion.  
This is true whether that place was in the macro definition or in the macro call.  
Because a macro expansion can include macro calls that need further 
expansion, named value references in one final expansion can come from 
several different macro definitions and can come from several different macro 
calls, either to different macros or—in the case of recursion—distinct calls to 
the same macro.

(Sometimes the property that variable references copied from a macro call 
mean the same thing in the expansion is called “hygiene” and the property that 
variable references copied from a macro definition mean the same thing in the 
expansion is called “referential transparency.”  We include both properties in 
the term “hygiene.”)

Specifically, a macro can bind temporary variables in its expansion without the 
risk of accidentally capturing references in the macro call to another binding 
with the same name.  Furthermore, a macro can reference module bindings in 
its expansion without the risk of those references accidentally being captured 
by bindings of other variables with the same name that surround the macro 
call.  A macro can reference module bindings in its expansion without 
worrying that the intended bindings might have different names in a module 
where the macro is called.

One way to implement this is for each template-element that is a NAME to be 
replaced in the macro expansion by a special token which plays the same 
grammatical role as a NAME but remembers three pieces of information:

■ The original NAME.

■ The lexical context where the macro was defined, which is just a module 
since macro definitions are only allowed at top level, not inside of bindings.
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■ The specific macro call occurrence.  This could be an integer that is 
incremented each time a macro expansion occurs.

In general one cannot know until all macros are expanded whether a NAME is a 
bound variable reference, a module binding reference, a variable that is being 
bound, or something that is not a binding name at all, such as a definition 
modifier or an intermediate word.  Thus the information for each of those cases 
is retained in the special token. A named value reference and a binding connect 
if and only if the original NAMES and the specific macro call occurrences are 
both the same.  (In that case, the lexical contexts will also be the same, but this 
need not be checked.)  A named value reference and a binding never connect if 
one originated in a template and the other originated in a macro call. 

For purposes of hygiene, a pattern-keyword default is treated like part of a 
template, even though it is actually part of a pattern.

The mapping from getters to setters done by the := operator is hygienic.  In all 
cases the setter name is looked up in the same lexical context and macro call 
occurrence as the getter name.

Intentional Hygiene Violation 10

Sometimes it is necessary for a macro to violate the hygienic property, for 
example to include in a macro expansion a named value reference to be 
executed in the lexical context where the macro was called, not the lexical 
context where the macro was defined.  Another example is creating a local 
binding in a macro expansion that will be visible to the body of the macro.  
This feature should be used sparingly, as it can be confusing to users of the 
macro, but sometimes it is indispensable.

The construct ?=  NAME in a template inserts into the expansion a reference to 
NAME, in the lexical context where the macro was called.  It is as if NAME came 
from the macro call rather than from the template.

Hygiene Versus Module Encapsulation 10

A named value reference in a macro expansion that was produced by a 
template-element that is a NAME  and that does not refer to a local binding 
created by the macro expansion must have the same meaning as would a 
named value reference with the same name adjacent to the macro definition.  
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This is true even if the macro call is in a different module or a different library 
from the one in which the macro definition occurs, even if the binding is not 
exported. 

This allows exported macros to make use of private bindings without requiring 
these bindings to be exported for general use. The module that calls the macro 
does not need to import the private bindings used by the expansion.

Implementations must use some automatic mechanism for marking the 
bindings potentially referenced by macro expansions and must make such 
bindings available to any library where the macro is accessible.  In general one 
cannot tell when a macro is defined what bindings are going to be referenced 
by macro expansions, because the right-hand sides of rewrite rules are not fully 
parsed until after a macro is called and expanded. However, an upper bound 
on this set of bindings can be computed.

Rewrite Rule Examples 10

The following definitions of all of the built-in macros are provided as 
examples.  This section is not intended to be a tutorial on how to write macros, 
just a collection of demonstrations of some of the tricks.

The built-in macros cannot really be implemented this way, for example, if 
and case cannot really both be implemented by expanding to the other.  
Certain built-in macros cannot be implemented with rewrite rules or 
necessarily rewrite into implementation-dependent code, so blank right-hand 
sides are shown for them.

Statement Macros 10

Begin 10

define macro begin

  { begin ?:body end } => { ?body }

end;
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Block 10

define macro block

  { block (?:name) ?ebody end }

   => { with-exit(method(?name) ?ebody end) }

  { block () ?ebody end }

   => { ?ebody }

 // Left-recursive so leftmost clause is innermost

 ebody:

  { ... exception (?excp, #rest ?options:expression,

                          #key ?test:expression,

                               ?init-arguments:expression)

          ?:body }

   => { with-handler(method() ... end,

                     method() ?body end,

                     ?excp, ?options) }

  { ?abody cleanup ?cleanup:body}

   => { with-cleanup(method() ?abody end, method () ?cleanup 

end) }

  { ?abody }

   => { ?abody }

 abody:

  { ?main:body afterwards ?after:body }

   => { with-afterwards(method() ?main end, method () ?after 

end) }

  { ?main:body }

   => { ?main }

 excp:

  { ?type:expression }           => { ?type }

  { ?:name :: ?type:expression } => { ?type, condition: ?name }

end;
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Case 10

define macro case

  { case ?:case-body end }           => { ?case-body }

 case-body:

  { ?test:expression => ?:body ... } => { if (?test) ?body

                                          else ... end if }

  { otherwise ?:body }               => { ?body }

  { }                                => { #f }

end;

For 10

// This macro has three auxiliary macros, whose definitions 

follow

define macro for

  { for (?header) ?fbody end }       => { for-aux ?fbody ?header 

end }

 // pass main body and finally body as two expressions

 fbody:

  { ?main:body }                     => { ?main, #f }

  { ?main:body finally ?val:body }   => { ?main, ?val }

 // convert iteration clauses to property list via for-clause 

macro

 header:

  { ?v:variable in ?c:expression, ... }

   => { for-clause(?v in ?c) ... }

  { ?v:variable = ?e1:expression then ?e2:expression, ... }

   => { for-clause(?v = ?e1 then ?e2) ... }

  { ?v:variable from ?e1:expression ?to, ... }
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   => { for-clause(?v from ?e1 ?to) ... }

  { #key ?while:expression }         => { for-clause(~?while 

stop) }

  { #key ?until:expression }         => { for-clause(?until 

stop) }

  { }                                => { }

 // parse the various forms of numeric iteration clause

 to:

  { to ?limit:expression by ?step:expression }

                                     => { hard ?limit ?step }

  { to ?limit:expression }           => { easy ?limit 1   > }

  { above ?limit:expression ?by }    => { easy ?limit ?by <= }

  { below ?limit:expression ?by }    => { easy ?limit ?by >= }

  { ?by }                            => { loop ?by }

 by:

  { by ?step:expression }            => { ?step }

  { }                                => { 1 }

end;

// Auxiliary macro to make the property list for an iteration 

clause.

// Each iteration clause is a separate call to this macro so the 

// hygiene rules will keep the temporary variables for each 

clause 

// distinct. 

// The properties are:

//  init0: - constituents for start of body, outside the loop

//  var1:  - a variable to bind on each iteration

//  init1: - initial value for that variable

//  next1: - value for that variable on iterations after the 

first

//  stop1: - test expression, stop if true, after binding var1's

//  var2:  - a variable to bind on each iteration, after stop1 

tests

//  next2: - value for that variable on every iteration

//  stop2: - test expression, stop if true, after binding var2's
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define macro for-clause

  // while:/until: clause

  { for-clause(?e:expression stop) }

   => { , stop2: ?e }

  // Explicit step clause

  { for-clause(?v:variable = ?e1:expression then ?e2:expression) 

}

   => { , var1: ?v, init1: ?e1, next1: ?e2 }

  // Collection clause

  { for-clause(?v:variable in ?c:expression) }

   => { , init0: [ let collection = ?c;

                   let (initial-state, limit,

                        next-state, finished-state?,

                        current-key, current-element)

                       = forward-iteration-protocol(collection); 

]

        , var1: state, init1: initial-state

        , next1: next-state(collection, state)

        , stop1: finished-state?(collection, state, limit)

        , var2: ?v, next2: current-element(collection, state) }

  // Numeric clause (three cases depending on ?to right-hand 

side)

  { for-clause(?v:name :: ?t:expression from ?e1:expression

               loop ?by:expression) }

   => { , init0: [ let init = ?e1;

                   let by = ?by; ]

        , var1: ?v :: ?t, init1: init, next1: ?v + by }
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  { for-clause(?v:name :: ?t:expression from ?e1:expression

               easy ?limit:expression ?by:expression 

?test:token) }

   => { , init0: [ let init = ?e1;

                   let limit = ?limit;

                   let by = ?by; ]

        , var1: ?v :: ?t, init1: init, next1: ?v + by

        , stop1: ?v ?test limit }

  { for-clause(?v:name :: ?t:expression from ?e1:expression

               hard ?limit:expression ?by:expression) }

   => { , init0: [ let init = ?e1;

                   let limit = ?limit;

                   let by = ?by; ]

        , var1: ?v :: ?t, init1: init, next1: ?v + by

        , stop1: if (by >= 0) ?v > limit else ?v < limit end if }

end;

// Auxiliary macro to expand multiple for-clause macros and

// concatenate their expansions into a single property list.

define macro for-aux

  { for-aux ?main:expression, ?value:expression, ?clauses:* end }

   => { for-aux2 ?main, ?value ?clauses end }

 clauses:

  { ?clause:macro ... } => { ?clause ... }

  { } => { }

end;

// Auxiliary macro to assemble collected stuff into a loop.

// Tricky points:

// loop iterates by tail-calling itself.

// return puts the finally clause into the correct lexical scope.

// ??init0 needs an auxiliary rule set to strip off the shielding

// brackets that make it possible to stash local declarations in

// a property list.

// ??var2 and ??next2 need a default because let doesn't allow

// an empty variable list.
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// ??stop1 and ??stop2 need a default because if () is invalid.

define macro for-aux2

  { for-aux2 ?main:expression, ?value:expression,

             #key ??init0:*, ??var1:variable,

                  ??init1:expression, ??next1:expression,

                  ??stop1:expression = #f,

                  ??var2:variable = x, ??next2:expression = 0,

                  ??stop2:expression = #f

    end }

   => { ??init0 ...

        local method loop(??var1, ...)

                let return = method() ?value end method;

                if (??stop1 | ...) return()

                else let (??var2, ...) = values(??next2, ...);

                     if(??stop2 | ...) return()

                     else ?main; loop(??next1, ...)

                     end if;

                end if;

              end method;

        loop(??init1, ...) }

 // strip off brackets used only for grouping

 init0:

  { [ ?stuff:* ] } => { ?stuff }

end;
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If 10

define macro if

  { if (?test:expression) ?:body ?elses end }

                                     => { case ?test => ?body;

                                          otherwise ?elses end }

 elses:

  { elseif (?test:expression) ?:body ... }

                                     => { case ?test => ?body;

                                          otherwise ... end }

  { else ?:body }                    => { ?body }

  { }                                => { #f }

end;

Method 10

define macro method

  { method (?parameters:*) => (?results:*) ; ?:body end }     =>

  { method (?parameters:*) => (?results:*) ?:body end }       =>

  { method (?parameters:*) => ?result:variable ; ?:body end } =>

  { method (?parameters:*) ; ?:body end }                     =>

  { method (?parameters:*) ?:body end }                       =>

end;

Select 10

define macro select

  { select (?what) ?:case-body end } => { ?what; ?case-body }

 what:

  { ?object:expression by ?compare:expression }

                                    =>  { let object = ?object;

                                          let compare = ?compare 

}

  { ?object:expression }            =>  { let object = ?object;

                                          let compare = \== }
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 case-body:

  { otherwise ?:body }              => { ?body }

  { }                               => { error("select error") }

  { ?keys => ?:body ... }           => { if (?keys) ?body

                                         else ... end if }

 keys:

  { ?key:expression }               => { compare(?key, object) }

  { ?key:expression, ... }          => { compare(?key, object) | 

... }

end;

Unless 10

define macro unless

  { unless (?test:expression) ?:body end }

   => { if (~ ?test) ?body end }

end;

Until 10

define macro until

  { until (?test:expression) ?:body end }

   => { local method loop ()

                if (~ ?test)

                  ?body;

                  loop()

                end if;

              end method;

        loop() }

end;
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While 10

define macro while

  { while (?test:expression) ?:body end }

   => { local method loop ()

                if (?test)

                  ?body;

                  loop()

                end if;

              end method;

        loop() }

end;

Definition Macros 10

Define Class 10

define macro class-definer

  { define ?mods:* class ?:name (?supers) ?slots end }  =>

 supers:

  { ?super:expression, ... }                            =>

  { }                                                   =>

// the = feature in slot specs is missing from this.

 slots:

  { inherited slot ?:name, #rest ?options:*; ... }      =>

  { ?mods:* slot ?:name, #rest ?options:*; ... }        =>

  { ?mods:* slot ?:name :: ?type:expression, #rest ?options:*; 

... }  

                                                        =>

  { required keyword ?key:expression, #rest ?options:*; ... }  =>

  { keyword ?key:expression, #rest ?options:*; ... }    =>

  { }                                                   =>

end;
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Define Constant 10

define macro constant-definer

  { define ?mods:* constant ?vars:* = ?init:expression } =>

end;

Define Domain 10

define macro domain-definer

  { define inert domain ?:name ( ?types ) }             =>

 types:

  { ?type:expression, ... } => { ?type, ... }

  { } => { }

end;

Define Generic 10

define macro generic-definer

  { define ?mods:* generic ?:name ?rest:* }             =>

 rest:

  { ( ?parameters:* ), #key }                           =>

  { ( ?parameters:* ) => ?:variable, #key }             =>

  { ( ?parameters:* ) => (?variables:*), #key }         =>

end;

Define Library 10

define macro library-definer

  { define library ?:name ?items end }                  =>

 items:

  { use ?:name, #rest ?options:*; ... }                 =>

  { export ?names; ... }                                =>

  { }                                                   =>
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 names:

  { ?:name }                                            =>

  { ?:name, ... }                                       =>

end;

Define Method 10

define macro method-definer

  { define ?mods:* method ?:name ?rest end }            =>

 rest:

  { (?parameters:*) => (?results:*) ; ?:body }          =>

  { (?parameters:*) => (?results:*) ?:body }            =>

  { (?parameters:*) => ?result:variable ; ?:body }      =>

  { (?parameters:*) ; ?:body }                          =>

  { (?parameters:*) ?:body }                            =>

end;

Define Module 10

define macro module-definer

  { define module ?:name ?items end }                   =>

 items:

  { use ?:name, #rest ?options:*; ... }                 =>

  { export ?names; ... }                                =>

  { create ?names; ... }                                =>

  { }                                                   =>

 names:

  { ?:name }                                            =>

  { ?:name, ... }                                       =>

end;



C H A P T E R  1 0

Macros

Rewrite Rule Examples 173

Define Variable 10

define macro variable-definer

  { define ?mods:* variable ?vars:* = ?init:expression } =>

end;

Additional Examples 10

The following macros are not built-in, but are simply supplied as examples.  
Each is shown as a definition followed by a sample call.

Test and Test-setter 10

define macro test

  { test(?object:expression) } =>

                               { frame-slot-getter(?object, 

#"test") }

end macro;

define macro test-setter

  { test-setter(?value:expression, ?object:expression) }

   => { frame-slot-setter(?value, ?object, #"test") }

end macro;

test(foo.bar) := foo.baz;
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Transform! 10

define macro transform!

 // the main rule

 { transform!(?xform:expression, ?x:expression, ?y:expression,

              #rest ?more:expression) }

  => { let xform = ?xform;

       let (nx, ny) = transform(xform, ?x, ?y);

       ?x := nx; ?y := ny;

       transform!(xform, ?more) }

 // base case

 { transform!(?xform:expression) } => { ?xform }

end macro;

transform!(w.transformation, xvar, yvar, w.pos.x, w.pos.y);

Formatting-table 10

define macro formatting-table

  { formatting-table (?:expression, 

                      #rest ?options:expression,

                      #key ?x-spacing:expression = 0,

                           ?y-spacing:expression = 0)

      ?:body end }

   => { do-formatting-table(?expression, method() ?body end,

                            ?options) }

end macro;

formatting-table (stream, x-spacing: 10, y-spacing: 12)

  foobar(stream)

end;
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With-input-context 10

define macro with-input-context

  { with-input-context (?context-type:expression,

                        #key ?override:expression = #f)

     ?bbody end }

   => { do-with-input-context(?context-type, ?bbody,

                              override: ?override) }

 bbody: 

  { ?:body ?clauses }  => { list(?clauses), method() ?body end }

 clauses:

  { }                  => { }

  { on (?:name :: ?spec:expression, ?type:variable) ?:body ... }

   => { pair(?spec, method (?name :: ?spec, ?type) ?body end),

        ... }

end macro;

with-input-context (context-type, override: #t)

      // the body that reads from the user      

      read-command-or-form (stream);

    // the clauses that dispatch on the type

    on (object :: <command>, type) execute-command (object);

    on (object :: <form>, type) evaluate-form (object, type);

end;

Define Command 10

define macro command-definer

 { define command ?:name (?arguments:*) (#rest 

?options:expression)

     ?:body end }

  => { define-command-1 ?name (?arguments) ?body end;

       define-command-2 ?name (?arguments) (?options) end }

end macro; 
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// define the method that implements a command

// throws away the "stuff" in each argument used by the command 

parser

define macro define-command-1

 { define-command-1 ?:name (?arguments) ?:body end }

  => { define method ?name (?arguments) ?body end }

 // map over ?arguments, reducing each to a parameter-list entry

 // but when we get to the first argument that has a default, put

 // in #key and switch to the key-arguments loop

 arguments:

  { ?:variable = ?default:expression ?stuff:*, ?key-arguments }

   => { #key ?variable = ?default, ?key-arguments }

  { ?argument, ... } => { ?argument, ... }

  { } => { }

 // map over keyword arguments the same way, each must

 // have a default

 key-arguments:

  { ?key-argument, ... } => { ?key-argument, ... }

  { } => { }

 // reduce one required argument spec to a parameter-list entry

 argument:

  { ?:variable ?stuff:* } => { ?variable }

 // reduce one keyword argument spec to a parameter-list entry

 key-argument:

  { ?:variable = ?default:expression ?stuff:* }

   => { ?variable = ?default }

end macro;

// generate the datum that describes a command and install it

define macro define-command-2

 { define-command-2 ?:name (?arguments) (#rest ?options:*) end }

  => { install-command(?name, list(?arguments), ?options) }
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 // map over ?arguments, reducing each to a data structure

 arguments:

  { ?argument, ... } => { ?argument, ... }

  { } => { }

 // reduce one argument specification to a data structure

 argument:

  { ?:name :: ?type:expression = ?default:expression ?details }

   => { make(<argument-info>, name: ?"name", type: ?type,

             default: ?default, ?details) }

  { ?:name :: ?type:expression ?details }

   => { make(<argument-info>, name: ?"name", type: ?type, 

?details) }

 // translate argument specification to <argument-info> init 

keywords

 details:

  { ?key:name ?value:expression ... } => { ?#"key" ?value, ... }

  { } => { }

end macro;

define command com-show-home-directory

       (directory :: <type> provide-default #t, 

        before :: <time> = #() prompt "date",

        after  :: <time> = #() prompt "date")

       // Options

       (command-table: directories,

        name: "Show Home Directory")

    body()

end command com-show-home-directory;
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Get-resource 10

// The idea is that in this application each library has its own 

// variable named $library, which is accessible to modules in 

that 

// library.  Get-resource gets a resource associated with the 

library 

// containing the call to it. Get-resource-from-library is a 

function.

// The get-resource macro is a device to make programs more 

concise. 

define macro get-resource

  { get-resource(?type:expression, ?id:expression) }

   => { get-resource-from-library(?=$library, ?type, ?id) } 

end macro;

show-icon(get-resource(ResType("ICON"), 1044));

Completing-from-suggestions 10

// The completing-from-suggestions macro defines a lexically 

visible 

// helper function called "suggest", which is only meaningful 

inside 

// of calls to the completer. The "suggest" function is passed 

as an 

// argument to the method passed to complete-input; 

alternatively it 

// could have been defined in a local declaration wrapped around 

the 

// method. 

define macro completing-from-suggestions 

  { completing-from-suggestions (?stream:expression,
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                                 #rest ?options:expression) 

      ?:body end } 

   =>{ complete-input(?stream,

                      method (?=suggest) ?body end,

                      ?options) }

end macro;

completing-from-suggestions (stream, partial-completers: #(' ', 

'-')) 

  for (command in commands)

    suggest (command, command-name (command))

  end for;

end completing-from-suggestions;

Define Jump-instruction 10

define macro jump-instruction-definer

  { define jump-instruction ?:name ?options:* end }

   => { register-instruction("j" ## ?#"name",

                             make(<instruction>,

                                  debug-name: "j" ## ?"name",

                                  ?options)) }

end macro;

define jump-instruction eq cr-bit: 2, commutative?: #t end;
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Overview 11

 

This chapter contains an entry for every class defined by Dylan.

The superclasses listed for a class 

 

C

 

 are those classes defined by the Dylan 
language from which 

 

C

 

 most directly inherits.  They are not required to be the 
direct superclasses of 

 

C

 

, because implementations are free to insert 
implementation-defined classes in the class hierarchy. However, any classes 
defined by Dylan which appear in the class precedence list of 

 

C

 

 must appear in 
the same order in which they would appear if the specified superclasses were 
the direct superclasses of 

 

C

 

, in the order given.

All classes are specified as open or sealed.  A class may be specifed as abstract; 
if it is not, then it is concrete.  A class may be specified as primary; if it is not, 
than it is free.  A class may be specified as instantiable.  If it is not, then it is 
uninstantiable. Chapter 9, “Sealing,” contains a complete description of these 
characteristics.

An implementation may choose to impose fewer restrictions than specified. For 
example, a class specified as sealed may be left open, and a class specified as 
primary may be left free. However, any program which takes advantage of this 
liberality will not be portable.

Each class entry includes tables of operations defined on the class. These tables 
are cross references to Chapter 12, “The Built-In Functions,” and represent 
redundant information. A function, generic function, or  method is listed under 
a class if one of its arguments is specialized on the class. In addition, 
constructors are listed. Not all generic functions which specialize on 

 

<object>

 

 
are listed.

 

Objects 11

 

<object>

 

[Open Abstract Class] 11

 

The class of all Dylan objects.

 

 

This document was created with FrameMaker 4.0.4
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Objects

 

Superclasses:

 

None.  

 

<object>

 

 is the root of the Dylan class hierarchy.

 

Init-keywords:

 

None.

 

Description:

 

The class 

 

<object>

 

 is the root of the type system.  All objects are general 
instances of 

 

<object>

 

, all types are subtypes of 

 

<object>

 

, and all classes are 
subclasses of 

 

<object>

 

.

 

Operations:

 

The class 

 

<object>

 

 provides the following operations:

 

Table 11-1

 

Functions on <object> 

 

Function Description Page

 

identity

 

Returns its argument. 274

 

always

 

Returns a function that always returns a 
particular object.

338

 

instance?

 

Tests whether an object is an instance of a 
type.

331

 

object-class

 

Returns the class of an object. 332

 

==

 

Compares two objects for identity. 255

 

~==

 

Compares two objects for nonidentity. 256

 

object-hash

 

The hash function for the equivalence 
predicate ==.

331

 

Table 11-2

 

Generic functions on <object> 

 

Function Description Page

 

initialize

 

Performs instance initialization that 
cannot be specified declaratively by a 
class definition.

247

 

as

 

Coerces an object to a type. 275

 

shallow-copy

 

Returns a copy of its argument. 279
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Types 11

 

<type>

 

[Sealed Abstract Class] 11

 

The class of all types, including classes and other types.

 

Superclasses:

 

<object>

 

Init-keywords:

 

None.

 

type-for-copy

 

Returns an appropriate type for creating 
mutable copies of its argument.

279

 

size

 

Returns the size of its argument. 281

 

empty?

 

Returns true if its argument is empty. 281

 

Table 11-3

 

Methods on <object> 

 

Function Description Page

 

initialize

 

Performs instance initialization that 
cannot be specified declaratively by a 
class definition.

247

 

type-for-copy

 

Returns an appropriate type for creating 
mutable copies of its argument.

279

 

=

 

Compares two objects for equality. 256

 

Table 11-2

 

Generic functions on <object> (continued)

 

Function Description Page
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Types

 

Description:

 

The class of all types. All types (including 

 

<type>

 

 and 

 

<class>

 

) are instances 
of 

 

<type>

 

.  

 

Operations:

 

The class 

 

<type>

 

 provides the following operations:

 

Classes 11

 

<class>

 

[Sealed Instantiable Class] 11

 

The class of all Dylan classes.

 

Superclasses:

 

<type>

 

Init-keywords:

 

The class 

 

<class>

 

 supports the following init-keywords:

 

superclasses:

 

An instance of 

 

<class>

 

 or 

 

<sequence>

 

 specifying the direct 
superclasses of the class. If it is a sequence, the elements of the 
sequence must be instances of 

 

<class>

 

. The default value is 

 

<object>

 

.  The meaning of the order of the superclasses is the 
same as in 

 

define class

 

.

 

abstract?:

 

An instance of 

 

<boolean>

 

 specifying whether the class is 
abstract or concrete. The default value is 

 

#f

 

.

 

slots:

 

An instance of 

 

<sequence>

 

 containing slot specs, where each 
slot-spec is a sequence of keyword/value pairs.

 

Table 11-4

 

Functions on <type> 

 

Function Description Page

 

instance?

 

Tests whether an object is an instance of a 
type.

331

 

subtype?

 

Tests whether a type is a subtype of 
another type.

332

 

union

 

Returns the union of two types. 253
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The following keywords and corresponding values  are accepted 
by all implementations.  Implementations may also define 
additional keywords and values for use within slot specs.

 

getter:

 

A generic function of one argument.  Unless the 
allocation of the slot is virtual, the getter method 
for the slot will be added to this generic 
function.  This option is required.

setter: A generic function of two arguments, or #f 
indicating “no setter.”  Unless the allocation of 
the slot is virtual, the setter method for the slot 
will be added to this generic function.  The 
default value is #f.

type: A type.  Values stored in the slot are restricted to 
be of this type.  The default value is <object>.

deferred-type:
A function of no arguments, which returns a 
type, and is called once to compute the type of 
the slot, within the call to make which constructs 
the first instance of that class.  For a given slot 
spec, either type: or deferred-type: may be 
specified, but not both.

init-value:
A default initial value for the slot.  This option 
cannot be specified along with 
init-function: or 
required-init-keyword: and it cannot be 
specified for a virtual slot. There is no default.

init-function:
A function of no arguments.  This function will 
be called to generate an initial value for the slot 
when a new instances is created.  This option 
cannot be specified along with init-value: or 
required-init-keyword: and it cannot be 
specified for a virtual slot..  There is no default

init-keyword:
A keyword.  This option permits an initial value 
for the slot to be passed to make, as a keyword 
argument using this keyword. This option cannot 
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be specified for a virtual slot. There is no default.  
This option cannot be specified along with 
required-init-keyword:.

required-init-keyword:
A keyword.  This option is like init-keyword:, 
except it indicates an init-keyword that must be 
provided when the class is instantiated.  If make 
is called on the class and a required init-keyword 
is not provided in the defaulted initialization 
arguments, an error is signaled. There is no 
default. This option cannot be specified if 
init-keyword:, init-value:, or 
init-function: is specified, or for a virtual 
slot.

allocation:
One of the keywords instance:, class:, 
each-subclass:, or virtual:, or an 
implementation defined keyword.  The meaning 
of this option is the same as adding the 
corresponding adjective to a define class 
form.

Description: The class of all classes.  All classes (including <class>) are general instances of 
<class>.

In most programs the majority of classes are created with define class.  
However, there is nothing to prevent programmers from creating classes by 
calling make, for example, if they want to create a class without storing it in a 
module binding, or if they want to create new classes at runtime.

If make is used to create a new class and creating the new class would violate 
any restrictions specified by sealing directives, then an error of type 
<sealed-object-error> is signaled.
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Operations: The class <class> provides the following operations::

Singletons 11

<singleton> [Sealed Instantiable Class] 11

The class of types that indicate a single object.

Superclasses: <type>

Init-keywords: The class <singleton> supports the following init-keyword:

Table 11-5 Functions on <class> 

Function Description Page

all-superclasses Returns all the superclasses of a class. 332

direct-superclass
es

Returns the direct superclasses of a class. 333

direct-subclasses Returns the direct subclasses of a class. 333

Table 11-6 Generic functions on <class> 

Function Description Page

make Returns a general instance of its first 
argument.

246

limited Returns a limited subtype of a class. 251

Table 11-7 Methods on <class> 

Function Description Page

make Returns a general instance of its first 
argument.

247
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object: An instance of <object>. The object that the singleton 
indicates.  There is no default for this argument.  If it is not 
supplied, an error will be signaled.

Description: The class of singletons.

If a singleton for the specified object already exists, implementations may 
return it rather than allocating a new singleton.

Operations: None.

Simple Objects 11

Characters 11

<character> [Sealed Class] 11

The class of characters.

Superclasses: <object>

Init-keywords: None.

Description: The class of characters. All characters are instances of <character>.

Operations: The class <character> provides the following operations:

Table 11-8 Methods on <character> 

Function Description Page

< Returns true if its first operand is less 
than its second operand.

258
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Symbols 11

<symbol> [Sealed Class] 11

The class of symbols.

Superclasses: <object>

Init-keywords: None.

Description: The <symbol> class provides a built-in, non-case-sensitive dictionary that 
associates a string with a unique immutable object that can be compared with 
== (which should be faster than calling a string-comparison routine).  This 
dictionary is accessed through the as function: as(<symbol>, string) and 
as(<string>, symbol).  Any string can be used.

Operations: The class <symbol> provides the following operations:

as-uppercase Coerces an object to uppercase. 277

as-lowercase Coerces an object to lowercase. 278

as Coerces an object to a type. 275

Table 11-9 Methods on <symbol> 

Function Description Page

as Coerces an object to a type. 275

Table 11-8 Methods on <character> (continued)

Function Description Page
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Booleans 11

<boolean> [Sealed Class] 11

The class of boolean values.

Superclasses: <object>

Init-keywords: None.

Operations: None.

Description: The class of boolean values. The literal constants #t and #f are general 
instances of <boolean>.  Note that for the purposes of conditional 
expressions, all objects besides #f count as true.  (This does not imply any 
other objects are instances of <boolean>.)

Numbers 11

Numbers 11

<number> [Open Abstract Class] 11

The class of all numbers.

Superclasses: <object>

Init-keywords: None.

Operations: None.

Description: The class of all numbers.
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The class <number> is open, to allow programmers to create additional 
numeric classes.  The built-in numeric operations do not provide default 
implementations for <number>, but for <complex>, a sealed subclass of 
<number>.

Complex Numbers 11

<complex> [Sealed Abstract Class] 11

The class of complex numbers.

Superclasses: <number>

Init-keywords: None.

Description: The sealed superclass of all built-in numbers, including real numbers.  There 
are no non-real subclasses of <complex> defined by the language, but 
implementations may define such subclasses. Because <complex> and all its 
defined subclasses are sealed, implementation-defined subclasses may be 
added efficiently.

Many built-in functions are defined to have methods on <complex>.  This 
means that the function is defined on all built-in subclasses of <complex>. It 
does not imply that there is a single method specialized on the <complex> 
class.

Operations: The class <complex> provides implementations for the following functions:

Table 11-10 Methods on <complex> 

Function Description Page

= Compares two objects for equality. 256

zero? Tests for the property of being equal to 
zero.

262

+ Returns the sum of its arguments. 264

* Returns the product of its arguments. 265
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Reals 11

<real> [Sealed Abstract Class] 11

The class of real numbers.

Superclasses: <complex>

Init-keywords: None.

Description: The class of real numbers.

Operations: The class <real> provides implementations for the following functions:

- Returns the difference of its arguments. 265

/ Returns the quotient of its arguments. 265

^ Raises an object to a specified power. 270

abs Returns the absolute value of its 
argument.

271

Table 11-11 Functions on <real> 

Function Description Page

floor Truncates a real number towards 
negative infinity.

266

ceiling Truncates a real number towards positive 
infinity.

267

round Rounds a real number towards the 
nearest mathematical integer.

267

truncate Truncates a real number towards zero. 268

Table 11-10 Methods on <complex> (continued)

Function Description Page
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Floats 11

The classes <single-float> and <double-float> are intended but not 
required to be the corresponding IEEE types.  The class <extended-float> is 
intended but not required to have more range and/or precision than 
<double-float>. 

If an implementation has fewer than three floating point classes, the names 
<single-float>, <double-float> and <extended-float> may all refer 
to the same object.

floor/ Returns the floor of the quotient of two 
numbers.

268

ceiling/ Returns the ceiling of the quotient of two 
numbers.

268

round/ Rounds off the quotient of two numbers. 269

truncate/ Returns the truncated quotient of two 
numbers.

269

modulo Returns the second value of floor/. 270

remainder Returns the second value of truncate/. 270

Table 11-12 Methods on <real> 

Function Description Page

< Returns true if its first operand is less 
than its second operand.

258

positive? Tests for the property of being positive. 263

negative? Tests for the property of being negative. 263

integral? Tests for the property of being integral. 263

negative Returns the negation of an object. 266

Table 11-11 Functions on <real> (continued)

Function Description Page
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<float> [Sealed Abstract Class] 11

The class of floating-point numbers.

Superclasses: <real>

Init-keywords: None.

Description: The class of all floating-point numbers. This class is abstract. All floating point 
numbers will be instances of some concrete subclass of this class.

Operations: None.

<single-float> [Sealed Class] 11

The class of single-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of single-precision floating-point numbers. This class is intended but 
not required to correspond to IEEE single-precision.

Operations: None.

<double-float> [Sealed Class] 11

The class of double-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of double-precision floating-point numbers. This class is intended but 
not required to correspond to IEEE double-precision.

Operations: None.
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<extended-float> [Sealed Class] 11

The class of extended-precision floating-point numbers.

Superclasses: <float>

Init-keywords: None.

Description: The class of extended-precision floating-point numbers. This class is intended 
but not required to provide more precision that <double-float>.

Operations: None.

Rationals 11

<rational> [Sealed Abstract Class] 11

The class of rational numbers.

Superclasses: <real>

Init-keywords: None.

Description: The class of rational numbers.

Operations: None.

Integers 11

<integer> [Sealed Class] 11

The class of integers.

Superclasses: <rational>

Init-keywords: None.

Description: The class of integers.
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Implementations are required to support integers with at least 28 bits of 
precision. The overflow and underflow behavior is implementation-defined. 
(Some implementations may choose to have integers of unlimited size, but this 
is not required.)

The result of dividing two integers with / is implementation defined. Portable 
programs should use floor/, ceiling/, round/, or truncate/ to divide 
two integers.

Operations: The class <integer> provides the following operations:

Table 11-13 Functions on <integer> 

Function Description Page

odd? Tests for the property of being an odd 
number.

262

even? Tests for the property of being an even 
number.

262

logior Returns the bitwise inclusive or of its 
integer arguments.

271

logxor Returns the bitwise exclusive or of its 
integer arguments.

271

logand Returns the bitwise and of its integer 
arguments.

272

lognot Returns the bitwise not of its integer 
argument.

272

logbit? Tests the value of a particular bit in its 
integer argument.

272

ash Performs an arithmetic shift on its first 
argument.

273

lcm Returns the least common multiple of 
two integers.

273

gcd Returns the greatest common divisor of 
two integers.

274
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Collections 11

This section describes collections, Dylans aggregate data structures.

An overview of collections is given in Chapter 8, “Collections.”

Collections 11

<collection> [Open Abstract  Class] 11

The class of collections, aggregate data structures.

Superclasses: <object>

Init-keywords: None.

Description: The class of collections.

<collection> is the root class of the collection class hierarchy.  It provides a 
set of basic operations on all collections.

The element type of <collection> is indefinite ⇐  <object>.

Table 11-14 Methods on singleton(<integer>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Operations: The class <collection> provides the following operations:

Table 11-15 Functions on <collection> 

Function Description Page

do Iterates over one or more collections for 
side effect.

315

map Iterates over one or more collections and 
collects the results in a freshly allocated 
collection.

316

map-as Iterates over one or more collections and 
collects the results in a freshly allocated 
collection of a specified type.

316

map-into Iterates over one or more collections and 
collects the results in an existing mutable 
collection.

317

any? Returns the first true value obtained by 
iterating over one or more collections.

318

every? Returns true if a predicate returns true 
when applied to all corresponding 
elements of a set of collections.

319

Table 11-16 Generic Functions on <collection> 

Function Description Page

element Returns the collection element associated 
with a particular key.

286

key-sequence Returns a sequence containing the keys 
of its collection argument.

286

reduce Combines the elements of a collection 
and a seed value into a single value by 
repeatedly applying a binary function.

320
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reduce1 Combines the elements of a collection 
into a single value by repeatedly 
applying a binary function, using the 
first element of the collection as the seed 
value.

321

member? Returns true if a collection contains a 
particular value.

322

find-key Returns the key in a collection such that 
the corresponding collection element 
satisfies a predicate.

323

key-test Returns the function used by its 
collection argument to compare keys.

285

forward-iteration
-protocol

Returns a group of functions used to 
iterate over the elements of a collection.

326

backward-iteratio
n-protocol

Returns a group of functions used to 
iterate over the elements of a collection in 
reverse order.

328

Table 11-17 Methods on <collection> 

Function Description Page

= Compares two objects for equality. 256

empty? Returns true if its argument is empty. 281

size Returns the size of its argument. 281

shallow-copy Returns a copy of its argument. 279

Table 11-18 Methods on singleton(<collection>) 

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-16 Generic Functions on <collection> (continued)

Function Description Page
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Explicit Key Collections 11

<explicit-key-collection> [Open Abstract Class] 11

The class of all collections that are not sequences.  

Superclasses: <collection>

Init-keywords: None.

Description: The class of all collections that are not sequences.

This class is disjoint from <sequence> because key-test is inert over the 
domain <sequence>.

The element type of <explicit-key-collection> is indefinite ⇐  
<object>.

Operations: The class <explicit-key-collection> provides the following operations:

Sequences 11

<sequence> [Open Abstract Class] 11

The class of collections whose keys are consecutive integers starting from zero.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections whose keys are consecutive integers starting from zero.

Table 11-19 Methods on singleton(<explicit-key-collection>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Sequences must be stable under iteration, and the iteration order must match 
the order of keys.  Thus, the key associated with a sequence’s iteration state can 
be determined by keeping a counter in parallel with the iteration state.

The default methods for add, add-new, remove, choose, choose-by, 
intersection, union, remove-duplicates, copy-sequence, 
concatenate, reverse, and sort all return new sequences that are 
instances of the type-for-copy of their primary sequence argument.  
However, more specialized methods are permitted to choose a more 
appropriate result class; for example, copy-sequence of a range returns 
another range, even though the type-for-copy value of a range is the 
<list> class.

<sequence> is disjoint from <explicit-key-collection> because of the 
inert domain over the function key-test for <sequence>.

The element type of <sequence> is indefinite ⇐  <object>.

Operations: The class <sequence> provides the following operations:

Table 11-20 Functions on <sequence> 

Function Description Page

concatenate Returns the concatenation of one or more 
sequences in a sequence of a type 
determined by the type-for-copy of its 
first argument.

311

concatenate-as Returns the concatenation of one or more 
sequences in a sequence of a specified 
type.

312

first Returns the first element of a sequence. 290

second Returns the second element of a 
sequence.

290

third Returns the third element of a sequence. 291
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Table 11-21 Generic Functions on <sequence> 

Function Page

add Adds an element to a sequence. 296

add! Adds an element to a sequence. 297

add-new Adds a new element to a sequence. 298

add-new! Adds a new element to a sequence. 299

remove Removes an element from a sequence. 300

remove! Removes an element from a sequence. 300

choose Returns those elements of a sequence 
that satisfy a predicate.

321

choose-by Returns those elements of a sequence 
that correspond to those in another 
sequence that satisfy a predicate.

322

intersection Returns the intersection of two sequences. 307

union Returns the union of two sequences. 308

remove-duplicates Returns a sequence without duplicates. 309

remove-duplicates
!

Returns a sequence without duplicates. 310

copy-sequence Returns a freshly allocated copy of some 
subsequence of a sequence.

311

replace-subsequen
ce!

Replaces a portion of a sequence with the 
elements of another sequence.

313

reverse Returns a sequence with elements in the 
reverse order of its argument sequence.

303

reverse! Returns a sequence with elements in the 
reverse order of its argument sequence.

304

sort Returns a sequence containing the 
elements of its argument sequence, 
sorted.

305
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Mutable Collections 11

<mutable-collection> [Open Abstract Class] 11

The class of collections that may be modified.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections that may be modified.

sort! Returns a sequence containing the 
elements of its argument sequence, 
sorted.

306

last Returns the last element of a sequence. 293

subsequence-posit
ion

Returns the position where a pattern 
appears in a sequence.

314

Table 11-22 Methods on <sequence> 

Function Description Page

= Compares two objects for equality. 256

key-test Returns the function used by its 
collection argument to compare keys.

285

Table 11-23 Methods on singleton(<sequence>) 

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-21 Generic Functions on <sequence> (continued)

Function Page
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Every mutable collection is required to allow modification by implementing 
element-setter.

The element type of <mutable-collection> is indefinite ⇐  
<object>.

Operations: The class <mutable-collection> provides the following operations:

Table 11-24 Functions on <mutable-collection> 

Function Description Page

map-into Iterates over one or more collections and 
collects the results in an existing mutable 
collection.

317

Table 11-25 Generic Functions on <mutable-collection> 

Function Description Page

last-setter Sets the last element of a mutable 
sequence.

293

Table 11-26 Methods on <mutable-collection> 

Function Description Page

type-for-copy Returns an appropriate type for creating 
mutable copies of its argument.

279

Table 11-27 Methods on singleton(<mutable-collection>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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<mutable-explicit-key-collection> [Open Abstract Class] 11

The class of explicit-key-collections that can have elements replaced.

Superclasses: <explicit-key-collection> <mutable-collection>

Init-keywords: None.

Description: The class of explicit-key-collections that can have elements replaced. 

The element type of <mutable-explicit-key-collection> is 
indefinite ⇐  <object>.

Operations: The class <mutable-explicit-key-collection> provides the following 
operations:

<mutable-sequence> [Open Abstract Class] 11

The class of sequences that may be modified.

Superclasses: <sequence> <mutable-collection>

Init-keywords: None.

Description: The class of sequences that may be modified.

The element type of <mutable-sequence> is indefinite ⇐  <object>.

Table 11-28 Methods on singleton(<mutable-explicit-key-collection>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Operations: The following operations are provided on <mutable-sequence>:

Table 11-29 Generic Functions on <mutable-sequence> 

Function Description Page

first-setter Sets the first element of a mutable 
sequence.

291

second-setter Sets the second element of a mutable 
sequence.

292

third-setter Sets the third element of a mutable 
sequence.

292

Table 11-30 Methods on <mutable-sequence> 

Function Description Page

first-setter Sets the first element of a mutable 
sequence.

291

second-setter Sets the second element of a mutable 
sequence.

292

third-setter Sets the third element of a mutable 
sequence.

292

Table 11-31 Methods on singleton(<mutable-sequence>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Stretchy Collections 11

<stretchy-collection> [Open Abstract Class] 11

The class of collections that may grow or shrink to accomodate adding or 
removing elements.

Superclasses: <collection>

Init-keywords: None.

Description: The class of collections that may grow or shrink to accomodate adding or 
removing elements.

Stretchy collections allow element-setter to be called with a key that is not 
present in the collection, expanding the collection as necessary to add a new 
element in that case.  Each concrete subclass of <stretchy-collection> 
must provide or inherit a method for element-setter that behaves as 
follows when there is not already an element present for the indicated key:

■ If the class is a subclass of <explicit-key-collection>, adds a new 
element to the collection with the indicated key.

■ If the class is a subclass of <sequence>, first calls size-setter on the 
key + 1 and the collection to expand the sequence.  The key must be a 
non-negative integer.

The element type of <stretchy-collection> is indefinite ⇐  
<object>.

Operations: The following operations are provided on <stretchy-collection>:

Table 11-32 Methods on singleton(<stretchy-collection>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Arrays 11

<array> [Open Abstract Instantiable Class] 11

The class of sequences whose elements are arranged according to a Cartesian 
coordinate system.

Superclasses: <mutable-sequence>

Init-keywords: The make method on singleton(<array>) accepts the following keyword 
arguments.  Note that these are not inherited by subclasses of <array>.

dimensions:An instance of <sequence> with elements that are instances of 
<integer>.  This argument specifies the dimensions of the 
array.  The size of the sequence specifies the rank (number of 
dimensions) of the array, and each integer in the sequence 
specifies the size of a dimension. This argument is required.  

fill: An instance of <object> specifying an initial value for each 
element of the array.  The default value is #f.

Description: The class of collections whose elements are arranged according to a Cartesian 
coordinate system.

An array element is referred to by a (possibly empty) series of indices.  The 
length of the series must equal the rank of the array.  Each index must be a 
non-negative integer less than the corresponding dimension.  An array element 
may alternatively be referred to by an integer, which is interpreted as a 
row-major index.

Arrays typically use space efficient representations, and the average time 
required to access a randomly chosen element is typically sublinear to the 
number of elements.

Whe a multi-dimensional array is created, the concrete class that is actually 
instantiated cannot be any of the specified subclasses of <array>, which are all 
one-dimensional.  Every implementation must have one or more concrete 
subclasses of <array> that are used for this purpose.  These concrete 
subclasses have no specified names, and their names are not exported by the 
Dylan module.
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When a single-dimensional array is created, the array created will be an 
instance of <vector>.

Each concrete subclass of <array> must either provide or inherit 
implementations of the functions element, element-setter, and 
dimensions.

The element type of <array> is indefinite ⇐  <object>.

Operations: The class <array> provides the following operations::

Table 11-33 Generic Functions on <array> 

Function Description Page

rank Returns the number of dimensions of an array. 283

row-major-index Returns the row-major-index position of an 
array element.

284

aref Returns the array element indicated by a set of 
indices.

289

aref-setter Sets the array element indicated by a set of 
indices.

289

dimensions Returns the dimensions of an array. 284

dimension Returns the size of a specified dimension of an 
array.

285

Table 11-34 Methods on <array> 

Function Description Page

size Returns the size of its argument. 281

rank Returns the number of dimensions of an array. 283

row-major-index Returns the row-major-index position of an 
array element.

284
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Vectors 11

<vector> [Open Abstract Instantiable Class] 11

The class of arrays of rank one (i.e. exactly one dimension).

Superclasses: <array>

Init-keywords: The make method on singleton(<vector>) accepts the following keyword 
arguments.  Note that these are not inherited by subclasses of <vector>.

size: An instance of <integer> specifying the size of the vector.  

fill: An instance of <object> specifying an initial value for each 
element of the vector.  The default value is #f.

Description: The class of one-dimensional arrays.

<vector> has no direct instances; calling make on <vector> returns an 
instance of <simple-object-vector>.

aref Returns the array element indicated by a set of 
indices.

289

aref-setter Sets the array element indicated by a set of 
indices.

289

dimension Returns the size of a specified dimension of an 
array.

285

Table 11-35 Methods on singleton(<array>) 

Function Description Page

make Returns a general instance of its first argument. 246

limited Returns a limited subtype of a class. 251

Table 11-34 Methods on <array> (continued)

Function Description Page
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Each concrete subclass of <vector> must either provide or inherit an 
implementation of size that shadows the method provided by <array>.

The element type of <vector> is indefinite ⇐  <object>.

Operations: The class <vector> provides the following operations:

<simple-vector> [Sealed Abstract Instantiable Class] 11

A predefined subclass of <vector> which provides an efficient 
implementation of fixed-length vectors.

Superclasses: <vector>

Table 11-36 Constructors for <vector> 

Function Description Page

vector Creates and returns a freshly allocated 
vector.

254

Table 11-37 Methods on <vector> 

Function Description Page

dimensions Returns the dimensions of an array. 284

element Returns the collection element associated 
with a particular key.

286

Table 11-38 Methods on singleton(<vector>) 

Function Description Page

make Returns a general instance of its first 
argument.

246

limited Returns a limited subtype of a class. 251
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Init-keywords: The make method on singleton(<simple-vector>) accepts the following 
keyword arguments.  Note that these are not inherited by subclasses of 
<simple-vector>.

size: An instance of <integer> specifying the size of the vector.  

fill: An instance of <object> specifying an initial value for each 
element of the vector.  The default value is #f.

Description: The class of simple and efficient vectors.

The class <simple-vector> provides a constant time implementation for the 
element  and element-setter functions. This property is shared by all 
subtypes of <simple-vector>.

Calling make on a <simple-vector> returns an instance of 
<simple-object-vector>.  The size of a simple vector cannot be changed 
after the simple vector has been created.

Vector literals (created with the #[…] syntax) are general instances of 
<simple-vector>.

The element type of <simple-vector> is indefinite ⇐  <object>.

The class <simple-object-vector> and the type 
limited(<simple-vector>, of: <object>) have exactly the same 
instances, but neither is a subtype of the other.  The relationship between them 
is simply that the make method for the type returns an instance of the class.

Operations: The class <simple-vector> provides the following operations:

Table 11-39 Methods on <simple-vector> 

Function Description Page

element Returns the collection element associated 
with a particular key.

286

element-setter Sets the collection element associated with a 
particular key.

287
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<simple-object-vector> [Sealed Instantiable Class] 11

The class of simple vectors that may have elements of any type.

Superclasses: <simple-vector>

Init-keywords: The class <simple-object-vector> supports the following init-keywords: 

size: An instance of <integer> specifying the size of the vector. The 
default value is 0.

fill: An instance of <object> specifying the initial value for each 
element. The default value is #f.

Description: The class <simple-object-vector> represents vectors that may have 
elements of any type.  It provides a constant time implementation for the 
element  and element-setter functions.

The element type of <simple-object-vector> is <object>.

Operations: None.

<stretchy-vector> [Open Abstract Instantiable Primary Class] 11

The class of vectors that are stretchy.  

Superclasses: <vector> <stretchy-collection>

Init-keywords: The class <stretchy-vector> supports the the following init-keywords:

size: An instance of <integer> specifying the initial size of the 
stretchy vector. The default value is 0.

fill: An instance of <object> specifying the initial value for each 
element. The default value is #f.

Table 11-40 Methods on singleton(<simple-vector>) 

Function Description Page

make Returns a general instance of its first argument. 246

limited Returns a limited subtype of a class. 251
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Description: The class of vectors that are stretchy.

Because <stretchy-vector> is abstract and instantiable but has no specified 
subclasses, every implementation must provide one or more concrete subclass 
to instantiate. These concrete subclasses have no specified names, and their 
names are not exported by the Dylan module.

The element type of <simple-vector> is indefinite ⇐  <object>.

Operations: The class <stretchy-vector> provides the following operations:

Deques 11

<deque> [Open Abstract Instantiable Primary Class] 11

The class of double-ended queues.

Superclasses: <mutable-sequence> <stretchy-collection>

Init-keywords: The class <deque> supports the following init-keywords: 

size: An instance of <integer> specifying the initial size of the 
deque. The default value is 0.

Table 11-41 Methods on <stretchy-vector> 

Function Description Page

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300

Table 11-42 Methods on singleton(<stretchy-vector>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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fill: An instance of <object> specifying the initial value for each 
element. The default value is #f.

Description: A subclass of sequence that supports efficient forward and backward iteration, 
and efficient addition and removal of elements from the beginning or end of 
the sequence.

Because <deque> is abstract and instantiable but has no specified subclasses, 
every implementation must provide one or more concrete subclass to 
instantiate. These concrete subclasses have no specified names, and their names 
are not exported by the Dylan module.

The element type of <deque> is indefinite ⇐  <object>.

Operations: The class <deque> provides the following operations:

Table 11-43 Generic Functions on <deque> 

Function Description Page

push Adds an element to the front of a deque. 302

pop Removes and returns the first element of 
a deque.

302

push-last Adds an element to the end of a deque. 302

pop-last Removes and returns an element from 
the end of a deque.

303

Table 11-44 Methods on <deque> 

Function Description Page

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300
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Lists 11

Lists are constructed by linking together instances of <pair>. The head of a list 
contains an element, and the tail of the list contains a pointer to the next pair in 
the list. The list ends when the tail of a pair contains something besides another 
pair.

A proper list has a final pair with a tail containing the empty list.

An improper list does not have a final pair with a tail containing the empty 
list, either because the tail of its final pair is not the empty list, or because the 
list is circular and thus does not have a final pair.  Except when their behavior 
on improper lists is documented explicitly, collection or sequence functions are 
not guaranteed to return an answer when an improper list is used as a 
collection or a sequence.  At the implementation’s option, these functions may 
return the correct result, signal a <type-error>, or  (in the case of a circular 
list) fail to return.

When treated as a collection, the elements of a list are the heads of successive 
pairs in the list.

<list> [Sealed Instantiable Abstract Class] 11

The class of linked lists. 

Superclasses: <mutable-sequence>

Init-keywords: The make method on singleton(<list>) accepts the following keyword 
arguments.  Note that these are not inherited by subclasses of <list>.

size: An instance of <integer> specifying the size of the list. The 
default value is 0.

fill: An instance of <object> specifying the initial value for each 
element. The default value is #f.

Table 11-45 Methods on singleton(<deque>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Description: The class of linked lists.

The <list> class is partitioned into two concrete subclasses, <pair> and 
<empty-list>.  Calling make on <list> will return a linked list made from 
pairs and terminated with the empty list. 

The element type of <list> is <object>.

Operations: The class <list> provides the following operations:

Table 11-46 Constructors for <list> 

Function Description Page

list Creates and returns a freshly allocated 
list.

249

pair Creates and returns a freshly allocated 
pair.

249

Table 11-47 Functions on <list> 

Function Description Page

head Returns the head of a list. 294

tail Returns the tail of a list. 294

Table 11-48 Methods on <list> 

Function Description Page

size Returns the size of its argument. 281

= Compares two objects for equality. 256

add! Adds an element to a sequence. 296

remove! Removes an element from a sequence. 300
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<pair> [Sealed Instantiable Class] 11

The class of lists that can have new values assigned to their heads and tails.

Superclasses: <list>

Init-keywords: None.

Description: The class of lists that can have new values assigned to their heads and tails.

The element type of <pair> is <object>.

Operations: The following operations are provided on <pair>:

<empty-list> [Sealed Instantiable Class] 11

The class with only one instance, the empty list.

Table 11-49 Methods on singleton(<list>) 

Function Description Page

make Returns a general instance of its first 
argument.

246

Table 11-50 Functions on <pair> 

Function Description Page

head-setter Sets the head of a pair. 295

tail-setter Sets the tail of a pair. 295

Table 11-51 Constructors for <pair> 

Function Description Page

pair Creates and returns a freshly allocated 
pair.

249
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Superclasses: <list>

Init-keywords: None.

Description: The class <empty-list> has only one instance, the empty list.  The empty list 
is a direct instance of <empty-list> and an indirect instance of <list>.  
Note that <empty-list> is not == to singleton (#()).

The element type of <empty-list> is <object>.

Operations: None.

Ranges 11

<range> [Open Abstract Instantiable Primary Class] 11

The class of arithmetic sequences.

Superclasses: <sequence>

Init-keywords: The class <range> supports the the following init-keywords:

from: An instance of <real> specifying the first value in the range. 
The default value is 0.

by: An instance of <real> specifying the step between consecutive 
elements of the range. The default value is 1.

to: An instance of <real> specifying an inclusive bound for the 
range. If by: is positive, the range will include numbers up to 
and including this value. If by: is negative, the range will 
include numbers down to to and including this value.
to: cannot be specified with above: or below:.

above: An instance of <real> specifying an exclusive lower bound for 
the range. The range will only include numbers above this 
value, regardless of the sign of by:.
above: cannot be specified with to: or below:.
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below: An instance of <real> specifying an exclusive upper bound for 
the range. The range will only include numbers below this 
value, regardless of the sign of by:.
below: cannot be specified with to: or above:.

size: An instance of <integer> specifying the size of the range.

Description: The class <range> is used for creating sequences of numbers. Ranges may be 
infinite in size, and may run from higher numbers to lower numbers.

Because <range> in abstract and instantiable but has no specified subclasses, 
every implementation must provide one or more concrete subclass to 
instantiate. These concrete subclasses have no specified names, and their names 
are not exported by the Dylan module.

The element type of <range> is indefinite ⇐  <real>.

Operations: The class <range> provides the following operations:  

Table 11-52 Methods on <range> 

Function Description Page

member? Returns true if a collection contains a 
particular value.

322

size Returns the size of its argument. 281

copy-sequence Returns a freshly allocated copy of some 
subsequence of a sequence.

311

= Compares two objects for equality. 256

reverse Returns a sequence with elements in the 
reverse order of its argument sequence.

303

reverse! Returns a sequence with elements in the 
reverse order of its argument sequence.

303

intersection Returns the intersection of two sequences. 307

type-for-copy Returns an appropriate type for creating 
mutable copies of its argument.

279
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Strings 11

<string> [Open Abstract Instantiable Class] 11

The class of sequences with elements that are characters.

Superclasses: <mutable-sequence>

Init-keywords: The class <string> supports the following init-keywords: 

size: An instance of <integer> specifying the size of the string. The 
default value is 0.

fill: An instance of <character> specifying the initial value for 
each element. The default value is ‘ ‘ (space).

Description: The class <string> is used for holding sequences of characters.

<string> has no direct instances; calling make on <string> will return an 
instance of a concrete subclass of <string>.

The element type of <string> is indefinite ⇐  <character>.

Operations: The class <string> provides the following operations:

Table 11-53 Methods on singleton(<range>) 

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-54 Methods on <string> 

Function Description Page

< Returns true if its first operand is less 
than its second operand.

258

as-lowercase Coerces an object to lowercase. 278
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<byte-string> [Sealed Instantiable Class] 11

The class of vectors with elements that are eight-bit characters.

Superclasses: <string>  <vector>

Init-keywords: The class <byte-string> supports the following init-keywords: 

size: An instance of <integer> specifying the size of the byte string. 
The default value is 0.

fill: An instance of <character> specifying the initial value for 
each element. The default value is ‘ ‘ (space).

Description: The class <byte-string> represents strings with elements that are eight bit 
characters.  It provides constant time element and element-setter 
methods.

The element type of <byte-string> is indefinite ⇐  K2 (where K2 is a 
subtype of <character>).

as-lowercase! Coerces an object to lowercase in place. 278

as-uppercase Coerces an object to uppercase. 277

as-uppercase! Coerces an object to uppercase in place. 277

Table 11-55 Methods on singleton(<string>) 

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-54 Methods on <string> (continued)

Function Description Page



C H A P T E R  1 1

The Built-In Classes

Collections 225

Operations: The class <byte-string> provides the following operations:

<unicode-string> [Sealed Instantiable Class] 11

The class of vectors with elements that are sixteen-bit Unicode characters.

Superclasses: <string>  <vector>

Init-keywords: The class <unicode-string> supports the following init-keywords: 

size: An instance of <integer> specifying the size of the unicode 
string. The default value is 0.

fill: An instance of <character> specifying the initial value for 
each element. The default value is ‘ ‘ (space).

Description: The class <unicode-string> represents strings with elements that are 
sixteen bit Unicode characters.  It provides constant time element and 
element-setter methods.

The element type of <unicode-string> is indefinite ⇐  K1 (where K1 is 
a subtype of <character>).

Table 11-56 Methods on <byte-string> 

Function Description Page

element Returns the collection element associated 
with a particular key.

286

element-setter Sets the collection element associated 
with a particular key.

287
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Operations: The class <unicode-string> provides the following operations:

Tables 11

Also called a hash table, a table is an unordered mapping between arbitrary 
keys and elements.  Tables are the only predefined collections that are unstable 
under iteration.

Tables are stretchy in that they allow the addition and removal of keys.  
<table> and its subclasses are the only predefined classes that are stretchy but 
are not stretchy sequences.

For a complete description of tables, see “Tables” on page 120.

<table> [Open Abstract Instantiable Primary Class] 11

The class of tables (also known as hash tables).

Superclasses: <mutable-explicit-key-collection> <stretchy-collection>

Init-keywords: The class <table> supports the following init-keyword: 

size: An instance of <integer>. If specified, this value provides a hint 
to the implementation as to the expected number of elements to 
be stored in the table, which might be used to control how much 
space to initially allocate for the table.  The default value is 
unspecified.

Description: The class <table> is the only predefined instantiable subclass of 
<explicit-key-collection>.

Table 11-57 Methods on <unicode-string> 

Function Description Page

element Returns the collection element associated 
with a particular key.

286

element-setter Sets the collection element associated 
with a particular key.

287
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Every concrete subclass of <table> must provide or inherit a method for 
table-protocol.  For details, see “Tables” on page 120.

<table> has no direct instances; calling make on <table> will return an 
instance of <object-table>.

The element type of <table> is indefinite ⇐  <object>.

Operations: The class <table> provides the following operations:

Table 11-58 Generic Functions on <table> 

Function Description Page

table-protocol Returns functions used to implement the 
iteration protocol for a tables.

329

Table 11-59 Methods on <table> 

Function Description Page

forward-iteration
-protocol

Returns a group of functions used to 
iterate over the elements of a collection.

326

table-protocol Returns functions used to implement the 
iteration protocol for a tables.

329

remove-key! Modifies an explicit key collection so it 
no longer has a particular key.

324

element Returns the collection element associated 
with a particular key.

286

element-setter Sets the collection element associated 
with a particular key.

287

size Returns the size of its argument. 281

key-test Returns the function used by its 
collection argument to compare keys.

285



C H A P T E R  1 1  

The Built-In Classes

228 Collections

<object-table> [Open Abstract Instantiable Class] 11

The class of tables that compare keys using ==.

Superclasses: <table>

Init-keywords: None.

Description: Calling make on <table> will return a general instance of <object-table>.  
Because <object-table> is abstract and instantiable but has no specified 
subclasses, every implementation must provide one or more concrete 
subclasses to instantiate. These concrete subclasses have no specified names, 
and their names are not exported by the Dylan module.

The element type of <object-table> is indefinite ⇐  <object>.

Operations: The class <object-table> provides the following operations:

Table 11-60 Methods on singleton(<table>) 

Function Description Page

limited Returns a limited subtype of a class. 251

Table 11-61 Methods on <object-table> 

Function Description Page

table-protocol Returns functions used to implement the 
iteration protocol for a tables.

329

Table 11-62 Methods on singleton(<object-table>) 

Function Description Page

limited Returns a limited subtype of a class. 251
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Functions 11

Functions 11

<function> [Sealed Abstract Class] 11

The class of objects that can be applied to arguments.

Superclasses: <object>

Init-keywords: None.

Description: All functions are instances of <function>. Functions are described in Chapter 
6, “Functions.”

Operations: The class <function> provides the following operations:

Table 11-63 Functions on <function> 

Function Description Page

compose Returns the composition of one or more 
functions.

334

complement Returns a function that expresses the 
complement of a predicate.

335

disjoin Returns a function that expresses the 
disjunction of one or more predicates.

335

conjoin Returns a function that expresses the 
conjunction of one or more predicates.

336

curry Returns a function based on an existing 
function and a number of default initial 
arguments.

336
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rcurry Returns a function based on an existing 
function and a number of default final 
arguments.

337

function-speciali
zers

Returns the specializers of a function. 341

function-argument
s

Returns information about the 
arguments accepted by a function.

342

function-return-v
alues

Returns information about the values 
returned by a function.

343

applicable-method
?

Tests if a function is applicable to sample 
arguments.

343

apply Applies a function to arguments. 339

do Iterates over one or more collections for 
side effect.

315

map Iterates over one or more collections and 
collects the results in a freshly allocated 
collection.

316

map-as Iterates over one or more collections and 
collects the results in a freshly allocated 
collection of a specified type.

316

map-into Iterates over one or more collections and 
collects the results in an existing mutable 
collection.

317

any? Returns the first true value obtained by 
iterating over one or more collections.

318

every? Returns true if a predicate returns true 
when applied to all corresponding 
elements of a set of collections.

319

reduce Combines the elements of a collection 
and a seed value into a single value by 
repeatedly applying a binary function.

320

Table 11-63 Functions on <function> (continued)

Function Description Page
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Generic Functions 11

<generic-function> [Sealed Instantiable Class] 11

The class of functions that are made up of a number of individual methods.

Superclasses: <function>

Init-keywords: The class <generic-function> supports the following init-keywords:

required: An instance of <number> or <sequence>.

This argument represents the required arguments that the 
generic function accepts.  If a sequence is supplied, the size of 
the sequence is the number of required arguments, and the 
elements of the sequence are the specializers.  If a number is 
supplied, it is the number of required arguments, and the 

reduce1 Combines the elements of a collection 
into a single value by repeatedly 
applying a binary function, using the 
first element of the collection as the seed 
value.

321

find-key Returns the key in a collection such that 
the corresponding collection element 
satisfies a predicate.

323

replace-elements! Replaces collection elements that satisfy 
a predicate.

324

choose Returns those elements of a sequence 
that satisfy a predicate.

321

choose-by Returns those elements of a sequence 
that correspond to those in another 
sequence that satisfy a predicate.

322

do-handlers Applies a function to all dynamically 
active handlers.

351

Table 11-63 Functions on <function> (continued)

Function Description Page
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specializers default to <object>.  If the argument is not 
supplied, or the supplied argument is neither a sequence nor a 
non-negative integer, an error is signaled.

rest?: An instance of <boolean>. 

A true value indicates that the generic function accepts a 
variable number of arguments.  The default value is #f.

key: #f or an instance of <collection> whose elements are 
keywords.

If the value is a collection, then the generic function accepts 
keyword arguments, and the collection specifies the set of 
mandatory keywords for the generic function.  A value of #f 
indicates that the generic function does not accept keyword 
arguments.  The default value is #f.

all-keys?: An instance of <boolean>. 

A true value indicates that the generic function accepts all 
keyword arguments.  The default value is #f.

Description: The class of generic functions. Generic functions are described in Chapter 6, 
“Functions.”

The arguments describe the shape of the generic function’s parameter list, and 
thereby control which methods can be added to the generic function.  See the 
section “Kinds of Parameter Lists” on page 84 and the section “Parameter List 
Congruency” on page 91 for the implications of these choices.

An error is signaled if the value of rest?: is true and the value of key: is a 
collection. While a method parameter list may specify both #rest and #key, a 
generic function parameter list cannot.

An error is signaled if the value of all-keys?: is true and the value of key: 
is #f. 

A new generic function initially has no methods. An error will be signaled if a 
generic function is called before methods are added to it.  Once a generic 
function is created, you can give it behavior by adding methods to it with 
add-method or define method.

Generic functions are not usually created by calling make directly.  Most often 
they are created by define generic or implicitly by define method.
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Operations: The class <generic-function> provides the following operations:

Methods 11

<method> [Sealed Class] 11

The class of functions that are applicable to arguments of a specified type.

Superclasses: <function>

Init-keywords: None.

Description: The class of methods. Methods are described in Chapter 6, “Functions.”

Table 11-64 Functions on <generic-function> 

Function Description Page

generic-function-
methods

Returns the methods of a generic 
function.

340

add-method Adds a method to a generic function. 340

generic-function-
mandatory-keyword
s

Returns the mandatory keywords of a 
generic function, if any.

341

sorted-applicable
-methods

Returns all the methods in a generic 
function that are applicable to sample 
arguments, sorted in order of specificity.

344

find-method Returns the method in a generic function 
that has particular specializers.

345

remove-method Removes a method from a generic 
function.

345
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Operations: The class <method> provides the following operations:

Conditions 11

Conditions 11

<condition> [Open Abstract Class] 11

The class of objects used by the condition system to connect a signaler with an 
appropriate handler.

Superclasses: <object>

Init-keywords: None.

Description: The class of condition objects. A complete description of conditions is given in 
Chapter 7, “Conditions.”

Table 11-65 Functions on <method> 

Function Description Page

add-method Adds a method to a generic function. 340

remove-method Removes a method from a generic 
function.

345
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Operations: The class <condition> provides the following operations::

Table 11-66 Functions on <condition> 

Function Description Page

signal Signals a condition. 346

error Signals a non-recoverable error. 346

cerror Signals a correctable error. 347

break Invokes the debugger. 348

Table 11-67 Generic functions on <condition> 

Function Description Page

default-handler Called if no dynamic handler handles a 
condition.

349

return-query Called to query the user and return. 350

return-allowed? Returns true if a condition’s recovery 
protocol allows returning values.

351

return-descriptio
n

Returns a description of a condition’s 
returned values.

352

Table 11-68 Methods on <condition> 

Function Description Page

default-handler Called if no dynamic handler handles a 
condition.

349
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Serious Conditions 11

<serious-condition> [Open Abstract Class] 11

The class of conditions that cannot safely be ignored. 

Superclasses: <condition>

Init-keywords: None.

Description: The class of conditions that cannot safely be ignored. 

Operations: The following operations are defined on <serious-condition>.:

Errors 11

<error> [Open Abstract Class] 11

The class of conditions that represent something invalid about the program. 

Superclasses: <serious-condition>

Init-keywords: None.

Description: The class of serious conditions that represent program errors.

<error> is distinct from <serious-condition> so one can establish a 
handler for errors that does not also trap unpredictable environmental 
exceptions such as network problems.

Table 11-69 Methods on <serious-condition> 

Function Description Page

default-handler Called if no dynamic handler handles a 
condition.

349
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Operations: None.

<simple-error> [Sealed Instantiable Class] 11

The class of error conditions that consist of just an error message constructed 
from a format string and arguments.

Superclasses: <error>

Init-keywords: format-string: 
An instance of <string>. A format string describing the error.

format-arguments:
An instance of <sequence>. Format arguments to splice into 
the format string to describe the error.

Description: The class of error conditions that consist of just an error message constructed 
from a format string and arguments.

The recovery protocol of <simple-error> is empty.

Operations: The class <simple-error> provides the following operations:

<type-error> [Sealed Instantiable Class] 11

The class of error conditions generated by type checks.  

Superclasses: <error>

Init-keywords: value: An instance of <object>. The object whose type was checked.

Table 11-70 Functions on <simple-error> 

Function Description Page

condition-format-
string

Returns the format string of a simple 
condition.

352

condition-format-
arguments

Returns the format arguments of a 
simple condition.

353



C H A P T E R  1 1  

The Built-In Classes

238 Conditions

type: An instance of <type>. The type which was expected. The error 
was signaled because the object was not of this type.

Description: The class of errors indicating that an object was not of the expected type.

The recovery protocol is empty.

Operations: The class <type-error> provides the following operations::

<sealed-object-error> [Sealed Class] 11

The class of errors that are generated by sealing violations.

Superclasses: <error>

Init-keywords: None.

Description: The class of errors that indicate the violation of a sealing restriction.

Operations: None.

Warnings 11

<warning> [Abstract Class] 11

The class of conditions that are interesting to users but can safely be ignored.

Superclasses: <condition>

Table 11-71 Functions on <type-error> 

Function Description Page

type-error-value Returns the value which was not of the 
expected type.

353

type-error-expect
ed-type

Returns the expected type of the type 
check that led to the type error.

353
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Init-keywords: None.

Operations: The following operations are defined on <warning>:

Description: The class of conditions that can be safely ignored.

There is a default handler for <warning> that displays the warning in a 
user-interface dependent way and then returns #f.  The recovery protocol is 
that any value can be returned and will be ignored.

<simple-warning> [Sealed Instantiable Class] 11

A default class of warnings which are described by a warning string.

Superclasses: <warning>

IInit-keywords: format-string: 
An instance of <string>. A format string describing the 
warning.

format-arguments:
An instance of <sequence>. Format arguments to splice into 
the format string to describe the warning.

Description: The class of warnings described by a format string and arguments.

The recovery protocol is that any value can be returned and will be ignored.

Table 11-72 Methods on <warning> 

Function Description Page

default-handler Called if no dynamic handler handles a 
condition.

349
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Operations: The class <simple-warning> provides the following operations:

Restarts 11

<restart> [Open Abstract Class] 11

The class of conditions used for restarting a computation.

Superclasses: <condition>

Init-keywords: condition: #f or an instance of <condition>. This argument is accepted 
and ignored by <restart>; some subclasses save the value of 
this initialization argument and use it to associate a restart with 
a particular condition from which the restart can recover. No 
such subclasses are defined as part of the language.  Other 
restarts do not care; they can recover from any condition.

Description: The class of conditions used to correct an unusual situation.

There is a default handler for <restart> that signals an error reporting an 
attempt to use a restart for which no restart handler was established.  The 
recovery protocol concept is not applicable to restarts.

Table 11-73 Functions on <simple-warning> 

Function Description Page

condition-format-
string

Returns the format string of a simple 
condition.

352

condition-format-
arguments

Returns the format arguments of a 
simple condition.

353
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Operations: The class <restart> provides the following operations:

<simple-restart> [Sealed Instantiable Class] 11

A default class of restarts.

Superclasses: <restart>

Init-keywords: format-string: 
An instance of <string>. A format string describing the restart.

format-arguments:
An instance of <sequence>. Format arguments to splice into 
the format string to describe the restart.

Description: A default class of restarts.

Typical implementations will use the format string and format arguments to 
produce a description of the restart.

Table 11-74 Generic functions on <restart> 

Function Description Page

restart-query Called to query the user and restart. 350

Table 11-75 Methods on <restart> 

Function Description Page

default-handler Called if no dynamic handler handles a 
condition.

349
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Operations: The class <simple-restart> provides the following operations:

Aborts 11

<abort> [Sealed Instantiable Class] 11

The class of conditions used to terminate a computation. 

Superclasses: <restart>

Init-keywords: None.

Description: The class of conditions used to terminate a computation.

Handlers are expected to terminate execution of the current application 
command, or similar unit of execution, and return control to something like an 
application command loop.  This is comparable to command-period on the 
Macintosh.  The exact details of this feature depend on the particular 
environment, of course, but signaling an instance of <abort> is a uniform way 
to “get out.”

Operations: None.

Table 11-76 Functions on <simple-warning> 

Function Description Page

condition-format-
string

Returns the format string of a simple 
condition.

352

condition-format-
arguments

Returns the format arguments of a 
simple condition.

353
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Overview 12

 

This chapter contains an entry for each function defined by Dylan.

The functions described below are annotated either as an 

 

open generic 
function

 

 or as a 

 

function

 

.

A function specified as an open generic function can be extended through the 
addition of programmer defined methods.  The signature of the generic 
function constrains which methods can be added through the congruency rules 
described on page 91.  The signature does not imply a set of predefined 
methods.  For example, the signature of 

 

+

 

 is 

 

(<object>, <object>)

 

, but 
the predefined methods on 

 

+

 

 only cover subtypes of 

 

<number>

 

.  Particular 
behavior of the function is given in its description and in the description of its 
methods. 

A function specified as a function cannot portably be extended through the 
addition of methods.  Implementations are free to implement these functions as 
open generic functions, but programs that take advantage of such liberality will 
not be portable.  The signature of such a function specifies the type domain of 
the function, but does not necessarily imply that the function is applicable to all 
instances of the types.  The exact behavior of the function is given in its 
description.

Implementations are allowed to define these generic functions and functions 
with signatures that are less restrictive than those given below.  However, 
programs that take advantage of this liberality will not be portable.

Where a sealed domain is specified, implementations are free to seal the 
domain or leave the domain unsealed.  Portable programs should not rely on 
the domain being unsealed.

When a method is specified, it describes the behavior of a generic function 
when applied to arguments of particular types. It does not imply that this 
behavior is implemented by a single method.

 

 

This document was created with FrameMaker 4.0.4
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General Constructor 12

 

make

 

[Open Generic Function] 12

 

Returns a general instance of its first argument.

 

Signature:

 

make 

 

type

 

 #rest 

 

supplied-init-args

 

 #key #all-keys 

 

⇒

 

 

 

instance

 

Arguments:

 

type

 

An instance of 

 

<type>

 

.

 

supplied-init-args

 

Keyword/argument pairs.

 

Values:

 

instance

 

An 

 

<object>

 

, which must be a general instance of 

 

type

 

.

 

Description:

 

Returns an instance of 

 

type

 

, with characteristics specified by keyword 
arguments.

The 

 

instance

 

 returned is guaranteed to be a general instance of 

 

type

 

  but not 
necessarily a direct instance of 

 

type

 

.  This liberality allows 

 

make

 

 to be called on 
an abstract class or other type;  it can instantiate and return a direct instance of 
one of the concrete subtypes of the abstract class or type.

The 

 

instance

 

 returned may or may not be newly allocated.  If a new instance is 
allocated, 

 

make

 

 will call 

 

initialize

 

 on the instance before returning it.

Programmers may customize 

 

make

 

 for particular classes by defining methods 
specialized by singleton specializers.  These methods may obtain the default 

 

make

 

 behavior, if desired, by calling next-method.

Note that the 

 

<class>

 

 method on 

 

make

 

 returns a newly allocated direct 
instance of its first argument.
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make

 

 

 

class

 

 

 

#rest 

 

supplied-init-args

 

 #key 

 

⇒

 

  object

 

[G.F. Method] 12

 

The method on 

 

<class>

 

 creates an instance of 

 

class

 

, calls 

 

initialize

 

 on the 
instance, and then returns the instance.  An error is signaled if 

 

class

 

 is abstract.

A complete description of this method and its role in the initialization protocol 
is given in “Instance Creation and Initialization” on page 63.

 

make 

 

(singleton <array>)

 

 #key 

 

dimensions fill  

 

⇒

 

  array

 

[G.F. Method] 12

 

A method on 

 

singleton(<array>)

 

 accepts 

 

dimensions

 

 and 

 

fill

 

 keyword 
arguments, and instantiates a concrete subclass of 

 

<array>

 

.  These arguments 
are described with the <array> class on page 210.

 

make 

 

(singleton <vector>)

 

 #key 

 

size fill  

 

⇒

 

  simple-object-vector

 

[G.F. Method]

 

make 

 

(singleton <simple-vector>)

 

 #key 

 

size fill  

 

⇒

 

  simple-object-vector

 

[G.F. Method] 12

 

Methods on 

 

singleton(<vector>)

 

 and 

 

singleton(<simple-vector>)

 

 
accept 

 

size

 

 and 

 

fill

 

 keyword arguments, and return an instance of 

 

<simple-object-vector>

 

.  These arguments are described with the 

 

<vector>

 

 class on page 212 and with the 

 

<simple-vector>

 

 class on 
page 213.

 

make 

 

(singleton <list>)

 

 #key 

 

size fill  

 

⇒

 

  list

 

[G.F. Method] 12

 

A method on 

 

singleton(<list>)

 

 accepts 

 

size

 

 and 

 

fill

 

 keyword arguments.  
These arguments are described with the 

 

<list>

 

 class on page 218.

 

Initialization 12

 

initialize

 

[Open Generic Function] 12

 

Performs instance initialization that cannot be specified declaratively by a class 
definition.

 

Signature:

 

initialize 

 

instance

 

 #key #all-keys 

 

⇒

 

 #rest objects
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Arguments: instance An instance of <object>.

Values: objects Instances of <object>. The return values are ignored by make.

Description: Provides a way for users to handle initialization of instances which cannot be 
expressed simply by init specifications. This is typically needed when a 
computation requires inputs from multiple initialization arguments or slot 
values, or a single computation needs to be used to initialize multiple slots.

By convention, all initialize methods should call next-method very early, 
to make sure that any initializations from less specific classes are performed 
first.

The initialize generic function permits all keywords and requires none.  It 
does this because the keyword argument checking is performed by the default 
method on make.

initialize object #key ⇒   object [G.F. Method] 12

This method does nothing. It is present so that it is always safe for 
initialize methods to call next method, and so that it is safe for the default 
make method to call initialize.

slot-initialized? [Open Generic Function] 12

Tests whether a slot has been initialized

Signature: slot-initialized? instance getter  ⇒  boolean

Arguments: instance An instance of of <object>.

getter An instance of <generic-function>.

Values: boolean An instance of <boolean>.

Description: Returns true if the slot in instance that would be accessed by the getter generic 
function is initialized.  If the slot is not initialized, then false is returned.

slot-initialized? will signal an error if the  getter does not access a slot in 
the instance.
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To support slot-initialized? for a virtual slot, programmers must define 
a method for slot-initialized? which shares a protocol with the getter of 
the slot.

Specific Constructors 12

list [Function] 12

Creates and returns a freshly allocated list.

Signature: list #rest arguments ⇒  list

Arguments: arguments The elements of the list.  Instances of <object>.

Values: list A freshly allocated instance of <list>.

Description: Returns a freshly allocated list containing the arguments, in order.

pair [Function] 12

Creates and returns a freshly allocated pair.

Signature: pair object1,object2 ⇒  pair

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: pair A freshly allocated instance of <pair>.

Description: Creates a freshly allocated pair whose head value is object1 and tail value is 
object2.

pair (1, 2)

  ⇒  #(1 . 2)

pair (1, #(2, 3, 4, 5))

  ⇒  #(1, 2, 3, 4, 5)
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Note that while the pair returned by pair is freshly allocated, it may be the 
beginning of a list, portions of which are not freshly allocated.

define variable *preexisting-list* = list(2, 3, 4)

define variable *new-list* = pair(1, *preexisting-list*)

*new-list*

  ⇒  #(1, 2, 3, 4)

tail(*new-list*) == *preexisting-list*

  ⇒  #t

third(*new-list*) := ‘x’

*new-list*

  ⇒   #(1, 2, x, 4)

*preexisting-list*

  ⇒   #(2, x, 4)

range [Function] 12

Creates and returns a range.

Signature: range #key from to above below by size ⇒  range

Arguments: from An instance of <real>. The default value is 0.

to An instance of <real>.

above An instance of <real>.

below An instance of <real>.

by An instance of <real>.  The default value is 0.

size An instance of <real>.

Values: range An instance of <range>.

Description: Creates an instance of <range>. The arguments correspond to the initialization 
arguments of <range>, described on page 221.

singleton [Function] 12

Creates and returns a singleton.
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Signature: singleton object ⇒  singleton

Arguments: object An instance of <object>.

Values: singleton An instance of <singleton>. The singleton for object.

Description: Returns a singleton for object.  singleton(object) is equivalent to 
make(<singleton>, object: object). If a singleton for the specified object 
already exists, implementations are free to return it rather than allocate a new 
singleton.

limited [Function] 12

Returns a limited subtype of a class.

Signature: limited class  #key  ⇒  type

Arguments: class An instance of <class>.

Values: type An instance of <type>.

Description: Returns a limited subtype of class.  The available keyword arguments depend 
on the class.  Not all classes support limited; the methods for limited are 
documented individually.

limited (singleton <integer>) #key  min max ⇒  type [G.F. Method] 12

Returns a limited integer type, which is a subtype of <integer> whose 
instances are integers greater than or equal to min (if min: is specified) and less 
than or equal to max (if max: is specified).  If no keyword arguments are 
specified, the result type is equivalent to <integer>.  Limited integer types 
are not instantiable.

limited (singleton <collection>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <explicit-key-collection>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <mutable-collection>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <stretchy-collection>)
        #key  of size ⇒  type [G.F. Method]
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limited (singleton <mutable-explicit-key-collection>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <sequence>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <mutable-sequence>)
        #key  of size ⇒  type [G.F. Method] 12

These methods return uninstantiable limited collection types.

limited (singleton <table>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <object-table>)
        #key  of size ⇒  type [G.F. Method] 12

These two methods return types that support a size: initialization keyword 
with the same behavior as <table>.

limited (singleton <array>)
        #key  of size dimensions ⇒  type [G.F. Method] 12

This method returns a type that supports dimensions: and fill: 
initialization keywords with the same behavior as <array>.  The default for 
fill is #f so if instance?(#f, of) is not true and the product of the 
dimensions is nonzero, the fill: initialization keyword is required because the 
default would cause a type error.

Instantiating type with a value of dimensions  that has one element will return 
an instance of limited(<simple-vector>, of: of).

limited (singleton <vector>)
        #key  of size ⇒  type [G.F. Method] 12

This method returns the same types as the method on 
singleton(<simple-vector>).

limited (singleton <simple-vector>)
        #key  of size ⇒  type [G.F. Method]
limited (singleton <stretchy-vector>)
        #key  of  ⇒  type [G.F. Method]
limited (singleton <deque>)
        #key  of  ⇒  type [G.F. Method] 12

These three methods return types that support size: and fill: initialization 
keywords with the same behavior as the collection-class argument.  The default 
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for fill is #f so if instance?(#f, of) is not true and size is nonzero, the 
fill: initialization keyword is required because the default would cause a 
type error.

All general instances of <simple-vector> provide a constant time 
implementation of element and element-setter.

limited (singleton <string>)
        #key  of size  ⇒  type [G.F. Method] 12

The of argument must be a subtype of <character>.  This method returns a 
type that supports size: and fill: initialization keywords with the same 
behavior as <string>.    The default for fill: is ' ' so if instance?(' ', 
of) is not true and size is nonzero, the fill: initialization keyword is required 
because the default would cause a type error.

There are no specified subtypes of <character>, except for unions of 
singletons, which makes this method rather useless for portable programs.  
However the method is provided because there might be useful subtypes of 
<character> in a particular implementation or in future versions of Dylan.

limited (singleton <range>)
        #key  of  ⇒  type [G.F. Method] 12

The of argument must be a subtype of <real>.  This method returns a type 
that supports from:, to:, below:, above:, by:, and size: initialization 
keywords with the same behavior as <range>.  Make of this type signals a 
<type-error> if any element of the range is not an instance of of.

type-union [Function] 12

Returns the union of two types.

Signature: type-union type1 #rest more-types  ⇒  type

Arguments: type1 An instance of <type>.

more-types Instances of <type>.

Values: type An instance of <type>.
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Description: Returns a type whose instances are the instances of type1 and all the more-types. 
The type returned is not instantiable.  A complete description of union types is 
given in “Union Types” on page 71.

define constant $my-enumerated-type = 

                    type-union(singleton(#"one"),

                               singleton(#"two"),

                               singleton(#"three"),

                               singleton(#"four"),

                               singleton(#"five"))

vector [Function] 12

Creates and returns a freshly allocated vector.

Signature: vector #rest arguments  ⇒   vector

Arguments: arguments Instances of <object>.

Values: vector A freshly allocated instance of <simple-object-vector>.  Its 
elements are the arguments, in order.

Description: Returns a vector whose elements are the arguments, in order.

Equality and Comparison 12

Dylan provides an identity function, as well as a group of equality and 
magnitude comparison functions that can be extended for user classes.  The 
functions ~=, ~==, >, <=, >=, min and max are defined in terms of == or = and 
<.  By extending the behavior of = and <, programs can extend the behavior of 
the other functions.

For the protocol to work, user-defined methods on = and < must preserve the 
following properties:

Identity: If (a = b), then (a = b).

Transitivity: If (a <  b) and (b < c), then (a <  c).
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If (a =  b) and (b =  c), then (a = c).

Trichotomy: Exactly one of: (a <  b), (a = b), (b <  a) always holds 
(on the assumption that these two operations are defined for the 
objects in question).

In the general case, the behavior of comparison operators when applied to 
instances of <complex> is implementation defined.  This is to allow 
implementations to support IEEE floating point when comparing NaNs. 
However, when instances of <rational> and instances of <float> are 
compared, it is defined that  the instance of <float> is first converted to a 
rational and then an exact comparison is performed.

Not and Identity 12

~ [Function] 12

Returns true if its argument is false; otherwise returns false.

Signature: ~ thing ⇒  boolean

Arguments: thing An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if thing is false. Returns false if thing is true.

Equality Comparisons 12

== [Function] 12

Compares two objects for identity.

Signature: object1 == object2 ⇒  boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.
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Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2  are identical.  Otherwise, it returns false.

Objects are considered identical if they are computationally equivalent.  That is, 
there is no way for any possible Dylan program to distinguish them.

At an implementation level, this will usually mean that the objects are pointers 
to the same storage or are the same immediate value.  An extension is made for 
built-in number classes and characters.  Because these objects are not mutable 
(i.e. cannot be changed), two with the same value will always be the same (and 
will thus be indistinguishable to programs).

~== [Function] 12

Compares two objects for nonidentity.

Signature: object1 ~== object2 ⇒  boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2  are not identical.  It returns false if they are 
identical.

If both arguments are instances of <complex> then the result is computed in 
an implementation-defined way.  Otherwise, the result is computed by 
~(object1 == object2).

= [Open Generic Function] 12

Compares two objects for equality.

Signature: object1 = object2 ⇒  boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.
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Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2  are equal.  Otherwise, it returns false.

Programmers may define methods for = specialized on classes they define.  A 
programmer may be required to provide an = method when defining 
subclasses of some predefined classes in order to fullfill the protocol of the 
class, as described below.  For objects which do not have a more specific = 
method, =  returns the same as ==.

= is not guaranteed to return. For example, it may not return when called on 
circular structures or otherwise unbounded structures.

The generic function = is inert over the domain (<complex>, <complex>).

object1 = object2  ⇒   boolean [G.F. Method] 12

The default method on = calls == and returns the result returned by ==.

complex1 = complex2  ⇒   boolean [G.F. Method] 12

Complex numbers are equal if they have the same mathematical value.

collection1 = collection2  ⇒   boolean [G.F. Method] 12

Two collections are equal if they have identical key-test functions, they have 
the same keys (as determined by their key-test functions), the elements at 
corresponding keys are =,  and neither collection is a dotted list.

sequence1  = sequence2  ⇒   boolean [G.F. Method] 12

For sequences, =  returns true if sequence1 and sequence2 have the same size and 
elements with = keys are =, and returns false otherwise.

list1 = list2 ⇒   boolean [G.F. Method] 12

For lists, =  returns true if the two lists are the same size, corresponding 
elements of list1 and list2 are = and the final tails are =. It returns false 
otherwise.
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list  = sequence  ⇒   boolean [G.F. Method]
sequence  =  list  ⇒   boolean [G.F. Method] 12

For mixed lists and sequences, = returns true if the list is not a dotted list, both 
have the same size, and elements with = keys are =. It returns false otherwise.

range1 =range2 ⇒   boolean [G.F. Method] 12

When called with two ranges, = always terminates, even if one or both ranges 
are unbounded in size.

~= [Function] 12

Compares two objects for inequality.

Signature: object1 ~= object2 ⇒  boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 and object2  are not equal.  It returns false if they are equal.

If both arguments are instances of <complex> then the result is computed in 
an implementation-defined way.  Otherwise, the result is computed by the 
expression ~(object1 = object2).

Magnitude Comparisons 12

< [Open Generic Function] 12

Returns true if its first operand is less than its second operand.

Signature: object1  <   object2   ⇒   boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.
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Values: boolean An instance of <boolean>.

Description: Returns true if object1 is less than object2.

The generic function < is inert over the domain (<complex>, <complex>).

real1  < real2  ⇒   boolean [G.F. Method] 12

Built-in real numbers are compared by mathematical value.

character1  < character2  ⇒   boolean [G.F. Method] 12

Characters are compared by the ordinal value of the underlying character set.  
Character case is significant.

string1 < string2  ⇒   boolean [G.F. Method] 12

When both arguments are strings, < compares strings by comparing elements 
from left to right, using < and = on corresponding elements, and stopping 
when the elements are not =.  If one string is a strict prefix of the other, the 
shorter string is considered the “smaller” one. 

For variations on string comparison (such as comparisons that ignore case), 
different comparison operators must be used.

> [Function] 12

Returns true if its first operand is greater than its second operand.

Signature: object1  > object2   ⇒   boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is greater than object2.

If both arguments are instances of <complex> then the result is computed in 
an implementation-defined way.  Otherwise, the result is computed by the 
expression (object2 < object1).
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<= [Function] 12

Returns true if its first operand is less than or equal to its second operand.

Signature: object1  <=   object2   ⇒   boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is less than or equal to object2.

If both arguments are instances of <complex> then the result is computed in 
an implementation-defined way.  Otherwise, the result is computed by the 
expression ~(object2 < object1).

>= [Function] 12

Returns true if its first operand is greater than or equal to its second operand.

Signature: object1   >=   object2   ⇒   boolean

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object1 is greater than or equal to object2.

If both arguments are instances of <complex> then the result is computed in 
an implementation-defined way.  Otherwise, the result is computed by the 
expression ~(object1 < object2).

min [Function] 12

Returns the least of its arguments.

Signature: min object1 #rest objects  ⇒   object2
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Arguments: object1 An instance of <object>.

objects Zero or more instances of <object>.

Values: object2 An instance of <object>.

Description: Returns the least of its arguments.

min operates by calling <, and therefore is applicable to any objects for which < 
is defined.

max [Function] 12

Returns the greatest of its arguments.

Signature: max object1 #rest objects  ⇒   object2

Arguments: object1 An instance of <object>.

objects Zero or more instances of <object>.

Values: object2 An instance of <object>.

Description: Returns the greatest of its arguments.

max operates by calling <, and therefore is applicable to any objects for which < 
is defined.

Arithmetic Operations 12

When instances of <rational> and instances of <float> are combined by a 
numerical function, the instance of <rational> is first converted to an 
instance of <float> of the same format as the original instance of <float>.
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Properties 12

odd? [Function] 12

Tests for the property of being an odd number.

Signature: odd?   integer   ⇒   boolean

Arguments: integer An instance of <integer>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an odd number.

even? [Function] 12

Tests for the property of being an even number.

Signature: even?   integer  ⇒   boolean

Arguments: integer An instance of <integer>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an even number.

zero? [Open Generic Function] 12

Tests for the property of being equal to zero.

Signature: zero?   object  ⇒   boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is equal to zero.
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zero?   complex ⇒   boolean [G.F. Method] 12

A method is defined for the class <complex>.

positive? [Open Generic Function] 12

Tests for the property of being positive.

Signature: positive?   object  ⇒   boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is positive.

positive?   real ⇒   boolean [G.F. Method] 12

A method is defined for the class <real>.

negative? [Open Generic Function] 12

Tests for the property of being negative.

Signature: negative?   object  ⇒   boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is negative.

negative?   real ⇒   boolean [G.F. Method] 12

A method is defined for the class <real>.

integral? [Open Generic Function] 12

Tests for the property of being integral.
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Signature: integral?   object  ⇒   boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if its argument is an integer.

integral?   object ⇒   false [G.F. Method] 12

A method is defined for the class <object> which returns #f.

integral?   real ⇒   boolean [G.F. Method] 12

A method is defined for real numbers which is equivalent to real = 
round(real).

Arithmetic Operations 12

+ [Open Generic Function] 12

Returns the sum of its arguments.

Signature: object1 + object2  ⇒   #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Adds two objects and returns the sum.

complex1  + complex2 ⇒   complex [G.F. Method] 12

A predefined method returns the sum of two complex numbers.
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* [Open Generic Function] 12

Returns the product of its arguments.

Signature: object1 * object2  ⇒  #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Multiplies two objects and returns the product.

complex1  * complex2 ⇒   complex [G.F. Method] 12

A predefined method returns the product of two complex numbers.

- [Open Generic Function] 12

Returns the difference of its arguments.

Signature: object1 – object2  ⇒   #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Subtracts object2 from object1 and returns the difference.

complex1  - complex2 ⇒   complex [G.F. Method] 12

A predefined method returns the difference of two complex numbers.

/ [Open Generic Function] 12

Returns the quotient of its arguments.
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Signature: object1 / object2  ⇒   #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Divides object2 into object1 and returns the quotient.

complex1  / complex2 ⇒   complex [G.F. Method] 12

A predefined method returns the quotient of two complex numbers.

Division by zero signals an error.

The result of dividing two integers with / is implementation defined. Portable 
programs should use floor/, ceiling/, round/, or truncate/ to divide 
two integers.

negative [Open Generic Function] 12

Returns the negation of an object.

Signature: negative  object1  ⇒   #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the negation of its argument.  The unary minus operator is equivalent 
to a call to the negative in the current binding environment.

negative real1  ⇒   real2 [G.F. Method] 12

A predefined method returns the additive inverse of a real number.

floor [Function] 12

Truncates a real number towards negative infinity.
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Signature: floor   real1  ⇒   integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards negative infinity.  The integer part is returned as integer, 
the remainder is returned as real2.

ceiling [Function] 12

Truncates a real number towards positive infinity.

Signature: ceiling   real1 ⇒   integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards positive infinity.  The integer part is returned as integer, 
the remainder is returned as real2.

round [Function] 12

Rounds a real number towards the nearest mathematical integer.

Signature: round   real1 ⇒   integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Rounds real1 towards towards the nearest mathematical integer.  The integer 
part is returned as integer, the remainder is returned as real2.
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truncate [Function] 12

Truncates a real number towards zero.

Signature: truncate   real1 ⇒   integer real2

Arguments: real1 An instance of <real>.

Values: integer An instance of <integer>.

real2 An instance of <real>.

Description: Truncates real1 towards zero.  The integer part is returned as integer, the 
remainder is returned as real2.

floor/ [Function] 12

Returns the floor of the quotient of two numbers.

Signature: floor/   real1 real2 ⇒   integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards negative infinity.  The 
integer part of the result is returned as integer, the remainder is returned as real3.

ceiling/ [Function] 12

Returns the ceiling of the quotient of two numbers.

Signature: ceiling/ real1 real2 ⇒   integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.
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Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards positive infinity.  The 
integer part of the result is returned as integer, the remainder is returned as real3.

round/ [Function] 12

Rounds off the quotient of two numbers.

Signature: round/ real1 real2 ⇒   integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and rounds the result towards the nearest mathematical 
integer.  The integer part of the result is returned as integer, the remainder is 
returned as real3.

truncate/ [Function] 12

Returns the truncated quotient of two numbers.

Signature: truncate/ real1 real2 ⇒   integer real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: integer An instance of <integer>.

real3 An instance of <real>.

Description: Divides real2 into real1 and truncates the result towards zero.  The integer part 
of the result is returned as integer, the remainder is returned as real3.
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modulo [Function] 12

Returns the second value of floor/.

Signature: modulo real1 real2  ⇒   real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: real3 An instance of <real>.

Description: Returns the second value of floor/(real1 , real2).

remainder [Function] 12

Returns the second value of truncate/.

Signature: remainder real1 real2  ⇒   real3

Arguments: real1 An instance of <real>.

real2 An instance of <real>.

Values: real3 An instance of <real>.

Description: Returns the second value of truncate/(real1 , real2).

^ [Open Generic Function] 12

Raises an object to a specified power.

Signature: object1 ^ object2  ⇒  #rest objects

Arguments: object1 An instance of <object>.

object2 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns object1  raised to the power object2.



C H A P T E R  1 2

The Built-In Functions

Arithmetic Operations 271

complex1  ^ complex2 ⇒   number [G.F. Method] 12

A predefined method raises a complex number to the power of another 
complex number and returns the result.

abs [Open Generic Function] 12

Returns the absolute value of its argument.

Signature: abs object1 ⇒  #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the absolute value of object1.

abs complex1 ⇒   complex [G.F. Method] 12

A predefined method returns the absolute value of a complex number.

logior [Function] 12

Returns the bitwise inclusive or of its integer arguments.

Signature: logior #rest integers ⇒   integer

Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>..

Description: Returns the bitwise inclusive or of the integers.

logxor [Function] 12

Returns the bitwise exclusive or of its integer arguments.

Signature: logxor #rest integers  ⇒   integer
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Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>.

Description: Returns the bitwise exclusive or of the integers.

logand [Function] 12

Returns the bitwise and of its integer arguments.

Signature: logand #rest integers ⇒   integer

Arguments: integers Zero or more instances of <integer>.

Values: integer An instance of <integer>.

Description: Returns the bitwise and of the integers.

lognot [Function] 12

Returns the bitwise not of its integer argument.

Signature: lognot integer1 ⇒   integer2

Arguments: integer1 An instance of <integer>.

Values: integer2 An instance of <integer>.

Description: Returns the bitwise not of the integer1.

logbit? [Function] 12

Tests the value of a particular bit in its integer argument.

Signature: logbit? index integer ⇒   boolean

Arguments: index An instance of <integer>.

integer An instance of <integer>.
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Values: boolean An instance of <boolean>.

Description: Returns true if the indexth bit in integer  is a one-bit; otherwise it returns false.

Negative integers are treated as if they were in two’s-complement notation.

ash [Function] 12

Performs an arithmetic shift on its first argument.

Signature: ash integer1 count ⇒   integer2

Arguments: integer1 An instance of <integer>.

count An instance of <integer>.

Values: integer2 An instance of <integer>.

Description: Performs an arithmetic shift on the binary representation of integer1.

ash shifts integer1 arithmetically left by count bit positions if count is positive, 
or right count bit positions if count is negative. The shifted value of the same 
sign as integer1 is returned.

When ash moves bits to the left, it adds zero-bits at the right.  When it moves 
them to the right, it discards bits.  

ash is defined to behave as if integer1 were represented in two's complement 
form, regardless of how integers are represented by the implementation.

ash(8, 1)

  ⇒   16

ash(32, -1)

  ⇒   16

lcm [Function] 12

Returns the least common multiple of two integers.

Signature: lcm integer1 integer2  ⇒   integer

Arguments: integer1 An instance of <integer>.



C H A P T E R  1 2  

The Built-In Functions

274 Coercing and Copying Objects

integer2 An instance of <integer>.

Values: integer An instance of <integer>.

Description: Returns the least common multiple of integer1 and integer2.

gcd [Function] 12

Returns the greatest common divisor of two integers.

Signature: gcd integer1 integer2  ⇒   integer

Arguments: integer1 An instance of <integer>.

integer2 An instance of <integer>.

Values: integer An instance of <integer>.

Description: Returns the greatest common divisor of integer1 and integer2.

Coercing and Copying Objects 12

identity [Function] 12

Returns its argument.

Signature: identity object   ⇒   object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as 
an argument.

Description: Returns object unaltered.
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values [Function] 12

Returns its arguments as multiple values.

Signature: values #rest the-values ⇒   #rest the-values

Arguments: the-values Zero or more instances of <object>.

Values: the-values Zero or more instances of <object>; the objects that were 
passed as arguments.

Description: Returns the-values as multiple values.

values(1, 2, 3);

 ⇒  1    // first value returned

    2    // second value returned

    3    // third value returned

General Coercion Function 12

as [Open Generic Function] 12

Coerces an object to a type.

Signature: as type object   ⇒   instance

Arguments: type An instance of <type>.

object An instance of <object>.

Values: instance An instance of <object>.  It must be an instance of type.

Description: Coerces object to type.  That is, it returns an instance of type that has the same 
contents as object.  If object is already an instance of type, it is returned 
unchanged.  In general, the value returned may or may not be freshly allocated.

Predefined methods allow coercion between integers and characters, between 
strings and symbols, and between collection types.  No methods are predefined 
for other classes. Programs may define additional methods.
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as  collection-type collection   ⇒   instance-of-collection-type [G.F. Method] 12

When converting between collection types, the return value will have the same 
number of elements as collection.  If the collection is an instance of <sequence> 
and the collection-type is a subtype of <sequence>, the elements will be in the 
same order.  The individual elements may also undergo some conversion.
The specific collection types for which as is defined is implementation defined.

as   (singleton <integer>) character   ⇒   integer [G.F. Method] 12

This method on as returns a numeric equivalent for character.  The integer 
returned is implementation dependent.

as   (singleton <character>) integer   ⇒   character [G.F. Method] 12

This method on as returns the character equivalent to integer.  The meaning of 
integer is implementation dependent.

as   (singleton <symbol>) string   ⇒   symbol [G.F. Method] 12

This method on as returns the symbol that has the name string.  If the symbol 
does not yet exist, it is created.  This method on as will always return the same 
symbol for strings of the same characters, without regard to alphabetic case.

as (<symbol>, "foo")

 ⇒   #"foo"

#"FOO" == as (<symbol>, "foo")

 ⇒   #t

#"Foo"

 ⇒   #"foo"

as   (singleton <string>) symbol   ⇒   string [G.F. Method] 12

This method on as returns the name of the symbol, which will be a string.

as (<string>, #"Foo")

 ⇒   "Foo"
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Coercing Case 12

as-uppercase [Open Generic Function] 12

Coerces an object to uppercase.

Signature: as-uppercase object1   ⇒  object2

Arguments: object1 An instance of <object>.

Values: object2 An instance of <object>.

Description: Coerces an object to uppercase and returns the resulting new object.

object1 is not modified by this operation.

as-uppercase   character   ⇒   uppercase-character [G.F. Method] 12

This method returns the upper-case equivalent for character.  If character already 
is uppercase or does not exist in two cases, it is returned unchanged.

as-uppercase   string ⇒   new-string [G.F. Method] 12

This method is equivalent to map (as-uppercase, string).

as-uppercase! [Open Generic Function] 12

Coerces an object to uppercase in place.

Signature: as-uppercase! object  ⇒  object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as 
an argument.

Description: Coerces an object to uppercase in place and returns the modified object.

object may be modified by this operation, and the result will be == to the object.
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as-uppercase!   string ⇒   string [G.F. Method] 12

This method is equivalent to map-into(string , as-uppercase , string).

as-lowercase [Open Generic Function] 12

Coerces an object to lowercase.

Signature: as-lowercase object1   ⇒   object2

Arguments: object1 An instance of <object>.

Values: object2 An instance of <object>.

Description: Coerces an object to lowercase and returns the resulting new object.

object1 will not be modified by this operation.

as-lowercase   character   ⇒   lowercase-character [G.F. Method] 12

The <character> method on as-lowercase returns the lower-case 
equivalent for character.  If character already is lowercase or does not exist in 
two cases, it is returned unchanged.

as-lowercase   string ⇒   new-string [G.F. Method] 12

This method is equivalent to map(as-lowercase,  string).

as-lowercase! [Open Generic Function] 12

Coerces an object to lowercase in place.

Signature: as-lowercase! object   ⇒  object

Arguments: object An instance of <object>.

Values: object An instance of <object>; the same object that was passed in as 
an argument.

Description: Coerces an object to lowercase in place and returns the modified object.
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object may be modified by this operation, and the result will be == to the object.

as-lowercase!   string ⇒   string [G.F. Method] 12

This method is equivalent to map-into(string , as-lowercase,  string).

Copying Objects 12

shallow-copy [Open Generic Function] 12

Returns a copy of its argument.

Signature: shallow-copy object1   ⇒   #rest objects

Arguments: object1 An instance of <object>.

Values: objects Instances of <object>.

Description: Returns a new object that has the same contents as  object1.  The contents are 
not copied but are the same objects contained in object1.

There is a predefined method for instances of <collection>. For other 
classes, the programmer must provide a method.

shallow-copy   collection  ⇒   new-collection [G.F. Method] 12

The method for <collection> creates a new object by calling make on the 
type-for-copy of  collection and filling it with the same elements as collection.

type-for-copy [Open Generic Function] 12

Returns an appropriate type for creating mutable copies of its argument.

Signature: type-for-copy object   ⇒   type

Arguments: object An instance of <object>.

Values: type An instance of <type>.
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Description: Returns an appropriate type for creating mutable copies of object. 

The type-for-copy value of a collection must be an instantiable subtype of 
<mutable-collection>. For collections that are themselves mutable, the 
collection’s actual class is generally the most appropriate (assuming it is 
instantiable). The type-for-copy value for a sequence should be a subtype 
of <sequence>, and the type-for-copy value of an explicit-key-collection 
should be a subtype of <explicit-key-collection>.

type-for-copy   object ⇒   type [G.F. Method] 12

The method on <object> returns the result of calling object-class on the 
object.

type-for-copy   mutable-collection ⇒   type [G.F. Method] 12

The method on <mutable-collection> returns the result of calling 
object-class on the mutable-collection.

type-for-copy   limited-collection ⇒   type [G.F. Method] 12

For a type L1 created by  limited(C, of: T, size: S) where C is not 
<range>, type-for-copy of an object made by instantiating L1  returns a 
type L2 that satisfies each of the following:

■ L2 is either a class or a limited collection type.

■ L2 is a subtype of C.

■ L2’s element type is equivalent to T.

■ If L2 is a limited collection type, its size attribute is #f.

type-for-copy   range ⇒   <list> [G.F. Method] 12

The method on <range> returns <list>.

type-for-copy   limited-range ⇒   <list> [G.F. Method] 12

The method on instances of limited(singleton(<range>)…)  returns 
<list>, the same as for any instance of <range>.
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Collection Operations 12

Note to implementors:

Functions such as map, map-as that return a new collection cannot rely on the 
type they instantiate having a valid default for fill:.   Therefore when the 
size of the result is non-zero these functions should compute the first element 
of the result before making the collection, and specify that element as the 
fill: value.  Otherwise a spurious type error could occur when making the 
collection.

Collection Properties 12

empty? [Open Generic Function] 12

Returns true if its argument is empty.

Signature: empty? object   ⇒   boolean

Arguments: object An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if object is empty. Otherwise returns #f.

empty?   collection ⇒   boolean [G.F. Method] 12

A set of methods defined for the class <collection> return true if the 
collection has zero elements.

size [Open Generic Function] 12

Returns the size of its argument.

Signature: size object  ⇒  #rest objects
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Arguments: object An instance of <object>.

Values: objects Instances of <object>.

Description: Returns the size of object.

size collection ⇒  integer-or-false [G.F. Method] 12

When called on a collection, size returns the numbers of keys in the 
collection.  This default method simply counts while iterating through the 
collection. size may return #f for collections of unbounded size.

size array ⇒  size [G.F. Method] 12

The method for <array> is equivalent to 

reduce(\*, 1, dimensions (array))

size  list  ⇒   integer-or-false [G.F. Method] 12

For circular lists, size is guaranteed to terminate and return #f.  For 
non-circular lists, size returns an integer size value.

size   range ⇒   size [G.F. Method] 12

For unbounded ranges, size always terminates and returns #f.  For finite 
ranges, size returns an integer.

size   table ⇒   size [G.F. Method] 12

The class <table> provides an implementation of size for use by its 
subclasses. The method returns an instance of <integer>.

size-setter [Open Generic Function] 12

Sets the size of an object.

Signature: size-setter new-size object  ⇒  new-size

Arguments: new-size An instance of <object>.

object An instance of <object>.
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Values: new-size An instance of <object>.

Description: Sets the size of object to new-size.

object is modified by this operation.

size-setter   integer stretchy-sequence ⇒   integer [G.F. Method] 12

Methods are provided for stretchy sequences, that is, for collections which are 
instances both of <stretchy-collection> and of <sequence>.

size-setter sets the size of stretchy-sequence  to be integer.  stretchy-sequence  
is modified by this operation.  If integer is less than or equal to the original size 
of stretchy-sequence, then the first integer elements of stretchy-sequence are 
retained at the same positions.  If integer is greater than the original size of 
stretchy-sequence, then the previous elements of the stretchy-sequence are retained 
at the same positions, and enough new elements are added to reach the new 
size.  The value of each new element is the same as would have been used if 
stretchy-sequence  had been created with make, specifying size: integer   but 
not fill:.

It is not specified how size-setter adds new elements to a stretchy-sequence.  
In particular, it is not required to call add! or any other predefined function.

rank [Open Generic Function] 12

Returns the number of dimensions of an array.

Signature: rank array  ⇒  rank

Arguments: array An instance of <array>.

Values: rank An instance of <integer>.

Description: Returns the number of dimensions (the rank) of array.

rank array ⇒  rank [G.F. Method] 12

The method for <array> computes rank by calling size on the dimensions 
of array.
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row-major-index [Open Generic Function] 12

Returns the row-major-index position of an array element.

Signature: row-major-index array #rest subscripts ⇒ index 

Arguments: array An instance of <array>.

subscripts Instances of <integer>.

Values: index An instance of <integer>.

Description: Computes the position according to the row-major ordering of array for the   
element that is specified by subscripts, and returns the position of that 
element.

An error is signaled if the number of subscripts is not equal to the rank of the 
array.  An error is signaled if any of the subscripts are out of bounds for array.

row-major-index array #rest subscripts ⇒ index [G.F. Method] 12

The method for <array> computes the index using the result of calling 
dimensions on the array.

dimensions [Open Generic Function] 12

Returns the dimensions of an array.

Signature: dimensions array   ⇒   sequence

Arguments: array An instance of <array>.

Values: sequence An instance of <sequence>.  The elements of this sequences 
will be instances of <integer>.

Description: Returns the dimensions  of array, as a sequence of integers.  The consequences 
are undefined if the resulting sequence is modified.  This function forms the 
basis for all the other array operations.  Each concrete subclass of <array> 
must either provide or inherit an implementation of this function.
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dimensions vector ⇒   sequence [G.F. Method] 12

Returns a sequence whose single element is the size of the vector.

dimension [Open Generic Function] 12

Returns the size of a specified dimension of an array.

Signature: dimension array axis ⇒ dimension 

Arguments: array An instance of <array>.

axis An instance of <integer>.

Values: dimension An instance of <integer>.

Description: Returns the axis dimension of array.

axis must be a non-negative integer less than the rank of array.  An error is 
signaled if axis is out of bounds for array.

dimension array axis ⇒ dimension  [G.F. Method] 12

The method for <array> calls element on the result of calling dimensions 
on the array, using the axis number as the key.

key-test [Open Generic Function] 12

Returns the function used by its collection argument to compare keys.

Signature: key-test collection ⇒  test-function

Arguments: collection An instance of <collection>.

Values: test-function An instance of <function>.  The function used by the 
collection to compare keys.

Description: Returns the function used by collection to compare keys.

All collection classes must provide or inherit a method that returns a result 
consistent with their iteration protocol and element methods.  A given 
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method for key-test must return the same value (compared with ==) each 
time it is called.

key-test sequence  ⇒  test-function [G.F. Method] 12

The method of key-test for sequences returns the function ==.

key-test table  ⇒  test-function [G.F. Method] 12

The method of key-test for instances of <table> returns the first value of 
table-protocol(table).

key-sequence [Open Generic Function] 12

Returns a sequence containing the keys of its collection argument.

Signature: key-sequence collection  ⇒   keys

Arguments: collection An instance of <collection>.

Values: keys An instance of <sequence> containing the keys of collection.

Description: Returns a sequence containing the keys of collection. 

Although elements may be duplicated in a collection, keys, by their nature, 
must be unique; two different elements in a collection may not share a common 
key, even though distinct keys may yield identical elements.

The order in which the keys from collection appear in the key sequence is 
unspecified if collection is unstable under iteration.  In particular, different calls 
to key-sequence with the same argument may yield differently ordered key 
sequences.  If collection  is stable under iteration, however, the resulting 
sequence of keys will be in the natural order for collection.

Selecting Elements 12

element [Open Generic Function] 12

Returns the collection element associated with a particular key.
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Signature: element   collection key #key default  ⇒   element

Arguments: collection An instance of <collection>.

key An instance of <object>.

default An instance of <object>.

Values: element An instance of <object>.

Description: Returns the element associated with key in collection.  If no element is associated 
with key, then the behavior of element depends on whether it was called with 
a default argument: if a default argument was passed, its value is returned; 
otherwise, an error is signaled.

All collections are required to implement element.

element simple-vector  index #key default ⇒   element [G.F. Method] 12

There is a constant time implementation of element for all general instances 
of <simple-vector>.

element unicode-string index #key default  ⇒  character  [G.F. Method] 12

The class <unicode-string> provides a constant time implementation for 
the element function.

element byte-string index #key default  ⇒  character      [G.F. Method] 12

The class <byte-string> provides a constant time implementation for the 
element function.

element table key #key default  ⇒  element      [G.F. Method] 12

The class <table> provides a default implementation for the element 
function.

element-setter [Open Generic Function] 12

Sets the collection element associated with a particular key.

Signature: element-setter new-value  mutable-collection key ⇒   new-value
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Arguments: new-value An instance of <object>.

mutable-collection
An instance of <mutable-collection>.

key An instance of <object>.

Values: new-value Zero or more instances of <object>.

Description: Alters mutable-collection  so that the value associated with key will subsequently 
be new-value. If mutable-collection is stretchy, element-setter may also 
change its size (for example, by adding new keys with values).

An error is signaled if a program calls element-setter with a key that is not 
already a key to collection, unless the collection is stretchy.

Stretchy collections allow element-setter to be called with a key that is not 
present in the collection, expanding the collection as necessary to add a new 
element in that case.  Each concrete subclass of <stretchy-collection> 
must provide or inherit a method for element-setter that behaves as 
follows when there is not already an element present for the indicated key:

■ If the class is a subclass of <explicit-key-collection>, adds a new 
element to the collection with the indicated key.

■ If the class is a subclass of <sequence>, first calls size-setter on the key 
+ 1 and the collection to expand the sequence.  The key must be a 
non-negative integer.

element-setter  new-element simple-vector  index [G.F. Method]
⇒   new-element 12

There is a constant time implementation of element-setter for all general 
instances of <simple-vector>.

element-setter   new-value table key [G.F. Method] 12

The class <table> provides an implementation of element-setter for use 
by its subclasses.  If no element with the given key exists, element-setter 
will add the key and new-value to the table.



C H A P T E R  1 2

The Built-In Functions

Collection Operations 289

element-setter  character unicode-string index ⇒  character [G.F. Method] 12

The class <unicode-string> provides a constant time implementation for 
the element-setter function.

element-setter  character byte-string index ⇒  character [G.F. Method] 12

The class <byte-string> provides a constant time implementation for the 
element-setter function.

aref [Open Generic Function] 12

Returns the array element indicated by a set of indices.

Signature: aref array #rest indices ⇒ element 

Arguments: array An instance of <array>.

indices Instances of <integer>.

Values: element An instance of <object>.

Description: Returns the element of array indicated by indices.

An error is signaled if the number of indices is not equal to the rank of the array.  
An error is signaled if any of the indices are out of bounds for the array.

aref array #rest indices ⇒ element [G.F. Method] 12

The method for <array> calls element on the array, using as the key the 
result of applying row-major-index to the array and indices.

aref-setter  [Open Generic Function] 12

Sets the array element indicated by a set of indices.

Signature: aref-setter new-value array #rest indices ⇒ new-value

Arguments: new-value An instance of <object>.

array An instance of <array>.

indices Instances of <integer>.
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Values: new-value An instance of <object>.

Description: Sets the element of array indicated by indices to the new-value and returns the 
new-value.

array is modified by this operation.

An error is signaled if the number of indices is not equal to the rank of the array.  
An error is signaled if any of the indices are out of bounds for array.  An error is 
signaled if the array is limited to hold objects of a particular type and the new 
value is not an instance of that type.

aref-setter new-value   array  #rest indices ⇒ new-value [G.F. Method] 12

The method for <array> calls element-setter on the array and new value, 
using as the key the result of applying row-major-index to the array and 
indices.

first [Function] 12

Returns the first element of a sequence.

Signature: first sequence #key default ⇒   value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the first element of the sequence by calling element with the supplied 
arguments and the corresponding index. 

Note that because element is zero-based,  first(seq) is equivalent to 
element(seq, 0) and seq[0].

second [Function] 12

Returns the second element of a sequence.

Signature: second sequence #key default ⇒  value
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Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the second element of the sequence by calling element with the 
supplied arguments and the corresponding index.

third [Function] 12

Returns the third element of a sequence.

Signature: third sequence #key default ⇒   value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value An instance of <object>.

Description: Returns the third element of the sequence by calling element with the supplied 
arguments and the corresponding index.

first-setter [Function] 12

Sets the first element of a mutable sequence.

Signature: first-setter new-value mutable-sequence ⇒   new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the first element of the mutable-sequence and returns the new-value, by 
calling element-setter with the supplied arguments and the 
corresponding index. 
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Note that because element-setter is zero-based, first-setter(val, 
seq) is equivalent to element-setter(val, seq, 0) and seq[0] := 
val.

second-setter [Function] 12

Sets the second element of a mutable sequence.

Signature: second-setter new-value  mutable-sequence ⇒    new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the second element of the mutable-sequence and returns the new-value, by 
calling element-setter with the supplied arguments and the 
corresponding index.

third-setter [Function] 12

Sets the third element of a mutable sequence.

Signature: third-setter new-value mutable-sequence ⇒   new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Sets the third element of the mutable-sequence and returns the new-value, by 
calling element-setter with the supplied arguments and the 
corresponding index.
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last [Open Generic Function] 12

Returns the last element of a sequence.

Signature: last sequence #key default ⇒   value

Arguments: sequence An instance of <sequence>.

default An instance of <object>.

Values: value Zero or more instances of <object>.

Description: Returns the last element of sequence. 

If the sequence is empty, then the behavior of last depends on whether it was 
called with a default  argument.  If the default  argument was supplied, its value 
is returned; otherwise, an error is signaled.

last (#("emperor", "of", "china"))

 ⇒   "china"

last-setter     [Open Generic Function] 12

Sets the last element of a mutable sequence.

Signature: last-setter new-value  mutable-sequence ⇒   new-value

Arguments: new-value An instance of <object>.

mutable-sequence
An instance of <mutable-sequence>.

Values: new-value An instance of <object>.

Description: Replaces the last element of mutable-sequence  with new-value.

mutable-sequence is modified by this operation.

new-value  must obey any type restrictions for elements of mutable-sequence .  An 
error is signaled if mutable-sequence  is empty or unbounded.
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define variable my-list = list (1, 2, 3)

my-list

 ⇒   #(1, 2, 3)

last (my-list) := 4

 ⇒   4

my-list

 ⇒   #(1, 2, 4)

define variable my-empty-vector = vector()

my-empty-vector

 ⇒   #[]

last (my-empty-vector) := 4

{error}

head [Function] 12

Returns the head of a list.

Signature: head list  ⇒   object

Arguments: list An instance of <list>.

Values: object An instance of <object>.

Description: Returns the head of list.

If list is a pair, head returns the value of the head slot. If list is the empty list, 
head returns the empty list.

head (#(4, 5, 6))

 ⇒   4

head (#())

 ⇒   #()

tail [Function] 12

Returns the tail of a list.

Signature: tail list  ⇒   object



C H A P T E R  1 2

The Built-In Functions

Collection Operations 295

Arguments: list An instance of <list>.

Values: object An instance of <object>.

Description: Returns the tail of list.

If list is a pair, tail returns the value of the tail slot. If list is the empty list, 
tail returns the empty list.

tail (#(4, 5, 6))

 ⇒   #(5, 6)

tail (#())

 ⇒   #()

head-setter [Function] 12

Sets the head of a pair.

Signature: head-setter object  pair ⇒   object

Arguments: object An instance of <object>.

pair An instance of <pair>.

Values: object An instance of <object>.

Description: Sets the head of pair to contain object and returns object.

pair is modified by this operation.

Example

define variable x = list (4, 5, 6)

head (x) := 9

 ⇒   9

x

 ⇒   #(9, 5, 6)

tail-setter [Function] 12

Sets the tail of a pair.
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Signature: tail-setter object  pair ⇒   object

Arguments: object An instance of <object>.

pair An instance of <pair>.

Values: object An instance of <object>.

Description: Sets the tail of pair to contain object and returns object.

pair is modified by this operation.

define variable x = list (4, 5, 6)

tail (x) := #(9, 8, 7)

 ⇒   #(9, 8, 7)

x

 ⇒   #(4, 9, 8, 7)

tail (x) := "dot"

 ⇒   "dot"

x

 ⇒   #(4, 9, 8 . "dot")

Adding and Removing Elements 12

add [Open Generic Function] 12

Adds an element to a sequence.

Signature: add source-sequence new-element  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element
An instance of <object>.

Values: result-sequence
An instance of <sequence>.
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Description: Returns a sequence that contains new-element and all the elements of 
source-sequence.  The result-sequence may or may not be freshly allocated.  It may 
share structure with a preexisting sequence.

source-sequence is not modified by this operation.

The result-sequence’s size is one greater than the size of source-sequence.  The 
generic function add doesn’t specify where the new element will be added, 
although individual methods may do so.

define variable *numbers* = #(3, 4, 5)

add (*numbers*, 1)

  ⇒   #(1, 3, 4, 5) 

*numbers*

  ⇒   #(3, 4, 5)

add! [Open Generic Function] 12

Adds an element to a sequence.

Signature: add! source-sequence new-element  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains new-element and all the elements of 
source-sequence.  The result-sequence may or may not be freshly allocated.  It may 
share structure with a preexisting sequence.  source-sequence and result-sequence 
may or may not be ==.

source-sequence may be modified by this operation.

result-sequence’s size is one greater than the size of source-sequence.  The generic 
function add! doesn’t specify where the new element will be added, although 
individual methods may do so.
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define variable *numbers* = list (3, 4, 5)

add! (*numbers*, 1)

  ⇒   #(1, 3, 4, 5)

*numbers*

  ⇒  {undefined}

add!   deque new-value  ⇒  deque [G.F. Method] 12

The result of add! on a deque is == to the deque argument, which is modified 
by this operation.

add!   stretchy-vector new-element  ⇒  stretchy-vector [G.F. Method] 12

The result of add! on a stretchy vector is == to the stretchy-vector argument, 
and the argument is modified by this operation.  add! adds new-element at the 
end of the stretchy-vector.

add!   list element ⇒   pair [G.F. Method] 12

The result of add! on a list is equivalent to (pair element list).  The result 
will share structure with the list argument, but it will not be == to the 
argument, and the argument will not be modified.

add-new [Open Generic Function] 12

Adds a new element to a sequence.

Signature: add-new source-sequence new-element #key test  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

test An instance of <function>. The default is ==.

Values: result-sequence
An instance of <sequence>.
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Description: Adds new-element to source-sequence if it is not already an element of 
source-sequence, as determined by the test function. If new-element is already a 
member of source-sequence, then source-sequence is returned unmodified.

If an element is added, add-new operates just as add would.  

The test function may be non-commutative: it is always called with an element 
from source-sequence as its first argument and new-element  as its second 
argument.

add-new (#(3, 4, 5), 1)

  ⇒   #(1, 3, 4, 5)

add-new (#(3, 4, 5), 4)

  ⇒   #(3, 4, 5)

add-new! [Open Generic Function] 12

Adds a new element to a sequence.

Signature: add-new! source-sequence new-element #key test  ⇒  result-sequence

Arguments: source-sequence
An instance of <sequence>.

new-element An instance of <object>.

test An instance of <function>. The default is ==.

Values: result-sequence An instance of <sequence>.

Description: Adds new-element to source-sequence if it is not already an element of 
source-sequence, as determined by the test function. If new-element is already a 
member of source-sequence, then source-sequence is returned unmodified.

If an element is added, add-new! operates just as add! would.    

The test function may be non-commutative: it is always called with an element 
from sequence as its first argument and new-element  as its second argument.

add-new! (list (3, 4, 5), 1)

  ⇒   #(1, 3, 4, 5)

add-new! (list (3, 4, 5), 4)

  ⇒   #(3, 4, 5)
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remove [Open Generic Function] 12

Removes an element from a sequence.

Signature: remove source-sequence value #key test count  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

value An instance of <object>.

test An instance of <function>.  The default is ==.

count An instance of <integer> or #f. The default is #f.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence consisting of the elements of source-sequence not equal to 
value.  The result-sequence may or may not be freshly allocated.  However, the 
source-sequence is never modified by remove.

test is a function which determines whether an element is equal to value. The 
test function may be non-commutative: it is always called with an element from 
source-sequence as its first argument and value  as its second argument.

If count is #f, then all copies of value are removed.  Otherwise, no more than 
count copies of value are removed (so additional elements equal to value might 
remain in result-sequence).

define variable *old-list* = list(1, 2, 3)

define variable *new-list* = remove(*old-list* 1)

*new-list*

  ⇒   #(2, 3)

*new-list* == tail(*old-list*)

  ⇒   {undefined}

remove! [Open Generic Function] 12

Removes an element from a sequence.

Signature: remove! source-sequence value #key test count  ⇒   result-sequence
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Arguments: source-sequence
An instance of <sequence>.

value An instance of <object>.

test An instance of <function>.  The default is ==.

count An instance of <integer> or #f. The default is #f.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence consisting of the elements of source-sequence not equal to 
value.  The result-sequence may or may not be freshly allocated, may or may not 
be == to the source-sequence, and may or may not share structure with the 
source-sequence.  The source-sequence may be modified by remove!.

test is a function which determines whether an element is equal to value. The 
test function may be non-commutative: it is always called with an element from 
source-sequence as its first argument and value  as its second argument.

If count is #f, then all copies of value are removed.  Otherwise, no more than 
count copies of value are removed (so additional elements equal to value might 
remain in result-sequence).

remove!   deque value #key test count   ⇒  deque [G.F. Method] 12

The result of remove! on a deque is == to the deque argument.  The argument 
is modified by this operation.

remove!   stretchy-vector element #key test count  [G.F. Method]
⇒  stretchy-vector 12

The result of remove! on a stretchy vector is == to the stretchy-vector 
argument.  The argument is modified by this operation.

remove!   list element #key test count  ⇒   list [G.F. Method] 12

The result of remove! on a list may or may not be == to the list argument.  The 
argument may be modified by this operation.
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push [Open Generic Function] 12

Adds an element to the front of a deque.

Signature: push deque new-value  ⇒  new-value

Arguments: deque An instance of <deque>.

new-value An instance of <object>.

Values: new-value An instance of <object>.  The same object that was passed in 
as an argument.

Description: Augments deque by adding new-value to its front.

deque is modified by this operation.

pop [Open Generic Function] 12

Removes and returns the first element of a deque.

Signature: pop deque  ⇒  first-element

Arguments: deque An instance of <deque>.

Values: first-element An instance of <object>.

Description: Removes the first element from deque and returns it.

deque is modified by this operation.

push-last [Open Generic Function] 12

Adds an element to the end of a deque.

Signature: push-last deque new-value  ⇒  new-value

Arguments: deque An instance of <deque>.

new-value An instance of <object>.
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Values: new-value An instance of <object>.  The same object that was passed in 
as an argument.

Description: Augments deque by adding new-value to its end.

deque is modified by this operation.

pop-last [Open Generic Function] 12

Removes and returns an element from the end of a deque.

Signature: pop-last deque  ⇒  last-element

Arguments: deque An instance of <deque>.

Values: last-element An instance of <object>.

Description: Removes the last element from deque and returns it.

deque is modified by this operation.

Reordering Elements 12

reverse [Open Generic Function] 12

Returns a sequence with elements in the reverse order of its argument sequence.

Signature: reverse source-sequence  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the same elements as source-sequence, but in 
reverse order.  The result-sequence is generally of the same class as the 
source-sequence.
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The result-sequence may or may not be freshly allocated.  The source-sequence is 
not modified by this operation.

The consequences are undefined if the source-sequence is unbounded (circular or 
infinite).

define variable *x* = list("bim", "bam", "boom")

*x*

  ⇒   #("bim", "bam", "boom")

reverse(*x*)

  ⇒   #("boom", "bam", "bim")

*x*

  ⇒   #("bim", "bam", "boom")

reverse   range ⇒   new-range [G.F. Method] 12

Reversing a range produces another range.  An unbounded range cannot be 
reversed.

reverse! [Open Generic Function] 12

Returns a sequence with elements in the reverse order of its argument sequence.

Signature: reverse! source-sequence  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the same elements as source-sequence, but in 
reverse order.  The result-sequence is generally of the same class as the 
source-sequence.

The source-sequence may be modified by this operation. The result-sequence may 
or may not be freshly allocated. The source-sequence and the result-sequence may 
or may not be ==. Programs should never rely on this operation performing a 
side-effect on an existing sequence, but should instead use the value returned 
by the function.
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The consequences are undefined if the source-sequence is unbounded (circular or 
infinite).

define variable *x* = list("bim", "bam", "boom")

*x*

  ⇒   #("bim", "bam", "boom")

reverse!(*x*)

  ⇒   #("boom", "bam", "bim")

*x*

  ⇒  {undefined}

reverse!   range ⇒   range [G.F. Method] 12

The result of reverse! on a range is == to the range argument.  An 
unbounded range cannot be reversed.

sort [Open Generic Function] 12

Returns a sequence containing the elements of its argument sequence, sorted.

Signature: sort source-sequence #key test stable  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>.  The default is <.

stable An instance of <object>, treated as a boolean.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements of source-sequence sorted into 
ascending order.  The result-sequence may or may not be freshly allocated.  The 
source-sequence is not modified by this operation.

sort determines the relationship between two elements by giving elements to 
the test. The first argument to the test function is one element of source-sequence; 
the second argument is another element of source-sequence. test should return 
true if and only if the first argument is strictly less than the second (in some 
appropriate sense). If the first argument is greater than or equal to the second 
(in the appropriate sense), then the test should return  #f.
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If stable is supplied and not #f, a possibly slower algorithm will be used that 
will leave in their original order any two elements, x and y, such that test(x, y) 
and test(y, x) are both false.

define variable *numbers* = vector(3, 1, 4, 1, 5, 9)

*numbers*

  ⇒  #[3, 1, 4, 1, 5, 9]

sort (*numbers*)

  ⇒   #[1, 1, 3, 4, 5, 9]

*numbers*

  ⇒   #[3, 1, 4, 1, 5, 9]

sort! [Open Generic Function] 12

Returns a sequence containing the elements of its argument sequence, sorted.

Signature: sort! source-sequence #key test stable  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>. The default is <.

stable An instance of <object>, treated as a boolean.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements of source-sequence sorted into 
ascending order.  The result-sequence may or may not be freshly allocated.  The 
source-sequence may be modified by this operation. The result-sequence may or 
may not be == to source-sequence.  After this operation, the contents of 
source-sequence are undefined.

Programs should never rely on this operation performing a side-effect on an 
existing sequence, but should instead use the value returned by the function.

sort! determines the relationship between two elements by giving elements 
to the test. The first argument to the test function is one element of 
source-sequence; the second argument is another element of source-sequence. test 
should return true if and only if the first argument is strictly less than the 
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second (in some appropriate sense). If the first argument is greater than or 
equal to the second (in the appropriate sense), then the test should return  #f.

If stable is supplied and not #f, a possibly slower algorithm will be used that 
will leave in their original order any two elements, x and y, such that test(x, y) 
and test(y, x) are both false.

define variable *numbers* = vector(3, 1, 4, 1, 5, 9)

*numbers*

  ⇒  #[3, 1, 4, 1, 5, 9]

sort! (*numbers*)

  ⇒   #[1, 1, 3, 4, 5, 9]

*numbers*

  ⇒   {undefined}

Set Operations 12

intersection [Open Generic Function] 12

Returns the intersection of two sequences.

Signature: intersection sequence1 sequence2 #key test  ⇒   new-sequence

Arguments: sequence1 An instance of <sequence>.

sequence2 An instance of <sequence>.

test An instance of <function>.  The default is ==.

Values: new-sequence An instance of <sequence>.

Description: Returns a new sequence containing only those elements of sequence1 that also 
appear in sequence2.

test  is used to determine whether an element appears in sequence2.  It is always 
called with an element of sequence1  as its first argument and an element from 
sequence2  as its second argument.  The order of elements in the result sequence 
is not specified.

new-sequence may or may not share structure with the sequence1 and sequence2.
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? intersection (#("john", "paul", "george", "ringo"),

                #("richard", "george", "edward", "charles"),

                test: \=)

#("george")

intersection   range1 range2  #key test ⇒   range [G.F. Method] 12

intersection applied to two ranges and a test of == (the default) will 
produce another range as its result, even though the type-for-copy of a 
range is not <range>.  If either range1 or range2 is unbounded, this method is 
guaranteed to terminate only if the test is ==.

union [Open Generic Function] 12

Returns the union of two sequences.

Signature: union sequence1 sequence2 #key test  ⇒   new-sequence

Arguments: sequence1 An instance of <sequence>.

sequence2 An instance of <sequence>.

test An instance of <function>.  The default is ==.

Values: new-sequence An instance of <sequence>.

Description: Returns a sequence containing every element of sequence1 and sequence2.

If the same element appears in both argument sequences, this will not cause it 
to appear twice in the result sequence.  However, if the same element appears 
more than once in a single argument sequence, it may appear more than once 
in the result sequence.

test is used for all comparisons.  It is always called with an element from 
sequence1  as its first argument and an element from sequence2  as its second 
argument.  The order of elements in the new-sequence is not specified.

new-sequence may or may not share structure with sequence1 or sequence2.
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union (#("butter", "flour", "sugar", "salt", "eggs"),

       #("eggs", "butter", "mushrooms", "onions", "salt"),

       test: \=)

 ⇒   #("salt", "butter", "flour", "sugar", "eggs",

       "mushrooms", "onions")

remove-duplicates [Open Generic Function] 12

Returns a sequence without duplicates.

Signature: remove-duplicates source-sequence #key test  ⇒   result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>.  The default is ==.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains all the unique elements from source-sequence 
but no duplicate elements.

test  is the function used to determine whether one element is a duplicate of 
another.  The test argument may be non-commutative; it will always be called 
with its arguments in the same order as they appear in source-sequence.

The result-sequence may or may not be freshly allocated.  However, the 
source-sequence will not be modified by this operation.

remove-duplicates (#("spam", "eggs", "spam", 

                     "sausage", "spam", "spam"),

                    test: \=)

 ⇒   #("spam", "eggs", "sausage")

or

 ⇒   #("eggs", "spam", "sausage")

or

 ⇒   #("eggs", "sausage", "spam")
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remove-duplicates! [Open Generic Function] 12

Returns a sequence without duplicates.

Signature: remove-duplicates! source-sequence #key test  ⇒  result-sequence

Arguments: source-sequence
An instance of <sequence>.

test An instance of <function>.  The default is ==.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence that contains all the unique elements from source-sequence 
but no duplicate elements.

test  is the function used to determine whether one element is a duplicate of 
another.  The test argument may be non-commutative; it will always be called 
with its arguments in the same order as they appear in source-sequence.

The result-sequence may or may not be freshly allocated, may or may not share 
structure with the source-sequence, and may or may not be == to the 
source-sequence.  The source-sequence may or may not be modified by the 
operation.

define variable *menu* = #("spam", "eggs", "spam", 

                           "sausage", "spam", "spam")

remove-duplicates! (*menu*, test: \=)

  ⇒   #("spam", "eggs", "sausage")

or

 ⇒   #("eggs", "spam", "sausage")

or

 ⇒   #("eggs", "sausage", "spam")

*menu*

  ⇒   {undefined}
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Subsequence Operations 12

copy-sequence [Open Generic Function] 12

Returns a freshly allocated copy of some subsequence of a sequence.

Signature: copy-sequence   source #key start end  ⇒   new-sequence

Arguments: source An instance of <sequence>.

start An instance of <integer>. The default is 0.

end An instance of <integer>.  The default is the size of source.

Values: new-sequence
A freshly allocated instance of <sequence>.

Description: Creates a freshly allocated sequence containing the elements of source between 
start and end.

define constant hamlet = #("to", "be", "or", "not", "to", "be")

hamlet == copy-sequence (hamlet)

 ⇒   #f

copy-sequence (hamlet, start: 2, end: 4)

 ⇒   #("or", "not")

copy-sequence   range #key start end ⇒   new-range [G.F. Method] 12

When applied to a range, copy-sequence returns another range, even though 
the type-for-copy of a range is the <list> class.

concatenate  [Function] 12

Returns the concatenation of one or more sequences in a sequence of a type 
determined by the type-for-copy of its first argument.

Signature: concatenate first-sequence #rest more-sequences  ⇒   result-sequence

Arguments: first-sequence
An instance of <sequence>.
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more-sequences
Instances of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing all the elements of all the sequences, in order.

The result-sequence will be an instance of the type-for-copy value for 
first-sequence. It may or may not be freshly allocated.  The result-sequence may be 
created by calling make on the indicated type, with a size: initialization 
argument whose value is the sum of the sizes of the argument sequences. (For 
this reason, the type-for-copy value of first-sequence must support the 
size: init-keyword.)

new-sequence may share structure with any of the argument sequences, but it is 
not guaranteed to do so. The argument sequences will not be modified by this 
operation.

concatenate ("low-", "calorie")

 ⇒   "low-calorie"

concatenate-as   [Function] 12

Returns the concatenation of one or more sequences in a sequence of a 
specified type.

Signature: concatenate-as type first-sequence #rest more-sequences ⇒   result-sequence

Arguments: type An instance of <type>, which must be a subtype of 
<mutable-sequence>

first-sequence
An instance of <sequence>.

more-sequences
Instances of <sequence>.

Values: result-sequence
An instance of type, and therefore also an instance of 
<sequence>.
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Description: Returns a sequence containing all the elements of all the sequences, in order.

The result-sequence will be an instance of type.  It may or may not be freshly 
allocated.

type must be a subtype of <mutable-sequence> and acceptable as the first 
argument to make.  size: with a non-negative integer value must be an 
acceptable initarg for make of type.  The result-sequence may be created by 
calling make on type, with a size: initialization argument whose value is the 
sum of the sizes of the arguments.

Example

concatenate-as (<string>, #('n', 'o', 'n'), #('f', 'a', 't'))

 ⇒   "nonfat"

replace-subsequence! [Open Generic Function] 12

Replaces a portion of a sequence with the elements of another sequence.

Signature: replace-subsequence! source-sequence insert-sequence #key start end
⇒    result-sequence

Arguments: source-sequence An instance of <sequence>.

insert-sequence An instance of <sequence>.

start An instance of <integer>.  The default is 0.

end An instance of <integer>.  The default is the size of sequence.

Values: result-sequence An instance of <sequence>.

Description: replace-subsequence! returns a sequence with the same elements as 
source-sequence, except that elements of the indicated subsequence are replaced 
by all the elements of  insert-sequence.  The subsequence to be overridden begins 
at index start and ends at index end.

result-sequence  may or may not share structure with source-sequence or 
insert-sequence, and it may or may not be == to source-sequence or insert-sequence. 
source-sequence  may or may not be modified by the operation. insert-sequence 
will not modified by this operation.
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Example

define variable x = list ("a", "b", "c", "d", "e")

abcde := replace-subsequence! (x, #("x", "y", "z"), end: 1))

 ⇒   #("x", "y", "z", "b", "c", "d", "e")

abcde := replace-subsequence! (x, #("x", "y", "z"), start: 4))

 ⇒   #("x", "y", "z", "b", "x", "y", "z")

abcde := replace-subsequence! (x, #("a", "b", "c"), 

                                      start: 2, end: 4))

 ⇒   #("x", "y", "a", "b", "c", "x", "y", "z")

subsequence-position [Open Generic Function] 12

Returns the position where a pattern appears in a sequence.

Signature: subsequence-position   big pattern #key test count  ⇒   index

Arguments: big An instance of <sequence>.

pattern An instance of <sequence>.

test An instance of <function>.  The default is ==.

count An instance of <integer>.  The default is 1.

Values: index #f or an instance of <integer>.

Description: Searches big for a subsequence that is element-for-element equal to pattern, as 
determined by the test argument.

test is applied to elements of successive subsequences of big and corresponding 
elements of the pattern to determine whether a match has occurred. If a 
subsequence is found, subsequence-position returns the index at which 
the subsequence starts; otherwise, it returns #f. If there is more than one 
match, count determines which subsequence is selected. A count of 1 (the 
default) indicates that the first match should be returned.

subsequence-position ("Ralph Waldo Emerson", "Waldo")

 ⇒   6 
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Mapping and Reducing 12

Simple Mapping 12

The following mapping functions (do, map, map-as, map-into, any?, 
every?) iterate over a number of source collections. Each time through the 
iteration, a function is applied to one element from each of the source 
collections. The number of arguments to the function is equal to the number of 
source collections.

The functions vary in how they handle the results of each function application.

do [Function] 12

Iterates over one or more collections for side effect.

Signature: do function collection #rest more-collections  ⇒   false

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: false #f.

Description: Applies function to corresponding elements of all the collections and returns #f.  
If all the collections are sequences, do guarantees that they will be processed in 
their natural order.

do (method (a b) print (a + b) end,

    #(100, 100, 200, 200),

    #(1, 2, 3, 4))

101

102

203

204

 ⇒   #f
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map  [Function] 12

Iterates over one or more collections and collects the results in a freshly 
allocated collection.

Signature: map   function collection #rest more-collections  ⇒   new-collection

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of  <collection>.

Values: new-collection A freshly allocated instance of <collection>.

Description: Creates a freshly allocated collection whose elements are obtained by calling 
function on corresponding elements of all the collections.  If all the collections are 
sequences, processing is performed in the natural order.

map returns a collection whose value is an instance of the type-for-copy 
value of collection.  The new collection is created by calling make on that type, 
with a size: initialization argument whose value is the number of 
corresponding elements in the collections.

map (\+,

     #(100, 100, 200, 200),

     #(1, 2, 3, 4))

 ⇒   #(101, 102, 203, 204)

map-as [Function] 12

Iterates over one or more collections and collects the results in a freshly 
allocated collection of a specified type.

Signature: map-as type function collection #rest more-collections ⇒   new-collection

Arguments: type An instance of <type>.  It must be an instantiable subtype of 
<mutable-collection>.

function An instance of <function>.

collection An instance of <collection>.
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more-collections
Instances of  <collection>.

Values: new-collection A freshly allocated instance of <mutable-collection>.

Description: Creates a freshly allocated collection of type type whose elements are obtained 
by applying function to corresponding elements of the collection arguments.  
type  must be acceptable as the first argument to make.  size: with a 
non-negative integer value must be an acceptable initarg for make of type.  
new-collection is created by calling make on type, with a size: initialization 
argument whose value is the number of corresponding elements in the 
collections.  If all the collections are sequences (including new-collection), 
processing is done in the natural order.

map-as (<vector>, \+,

        #(100, 100, 200, 200),

        #(1, 2, 3, 4))

 ⇒   #(101, 102, 203, 204)

map-into [Function] 12

Iterates over one or more collections and collects the results in an existing 
mutable collection.

Signature: map-into mutable-collection function collection #rest more-collections  
⇒  mutable-collection

Arguments: mutable-collection
An instance of <mutable-collection>.

function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: mutable-collection
An instance of <mutable-collection>.
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Description: Returns the mutable-collection argument after modifying it by replacing its 
elements with the results of applying function to corresponding elements of 
collection and more-collections.

If mutable-collection and all the other collections are sequences, processing is 
done in the natural order.

When mutable-collection  is an instance of <stretchy-collection>, the 
usual alignment requirement (described in “Collection Alignment” on 
page 118) is relaxed.  In this case, the key sequence of mutable-collection  is not 
considered during alignment.  Rather, only the key sequences for the source 
collections are aligned, with function  called on the corresponding elements.  The 
result of each call to function is then stored into mutable-collection  with the 
corresponding key (possibly stretching mutable-collection  in the process), using 
element-setter.  Other keys in mutable-collection remain undisturbed.

mutable-collection may be the same object as collection or any of the 
more-collections.

An error is signalled if mutable-collection does not have the same key-test 
function as the rest of the collections. This is true even if it is a 
<stretchy-collection> and therefore does not get aligned.

define variable x = list (10, 9, 8, 7)

map-into (x, \+, #(1, 2, 3, 4), #(100, 100, 200, 200))

 ⇒   #(101, 102, 203, 204)

x

 ⇒   #(101, 102, 203, 204)

any?   [Function] 12

Returns the first true value obtained by iterating over one or more collections.

Signature: any? function collection #rest more-collections   ⇒    value

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: value An instance of <object>.
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Description: Applies function to groups of corresponding elements of collection and 
more-collections. If an application of function returns true, then any? returns that 
true value. Otherwise function returns #f when applied to every such group, 
and any? returns #f. 

If all the collections are sequences, any? operates in natural order.  In all cases, 
any? stops on the first true value returned by function.

any? (\>, #(1, 2, 3 ,4), #(5, 4, 3, 2))

 ⇒   #t

any? (even?, #(1, 3, 5, 7))

 ⇒   #f

every? [Function] 12

Returns true if a predicate returns true when applied to all corresponding 
elements of a set of collections.

Signature: every? function collection #rest more-collections  ⇒   value

Arguments: function An instance of <function>.

collection An instance of <collection>.

more-collections
Instances of <collection>.

Values: value An instance of <boolean>.

Description: Applies function to groups of corresponding elements of collection and 
more-collections. If an application of function returns false, then every? returns 
#f. Otherwise function returns a true value when applied to every such group, 
and every? returns #t.

If all the collections are sequences, every? operates in natural order.  In all 
cases, every? stops on the first false value returned by function.

every? (\>, #(1, 2, 3, 4), #(5, 4, 3, 2))

 ⇒   #f

every? (odd?, #(1, 3, 5, 7))

 ⇒   #t
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Extensible Mapping Functions 12

reduce [Open Generic Function] 12

Combines the elements of a collection and a seed value into a single value by 
repeatedly applying a binary function.

Signature: reduce function initial-value collection  ⇒   value

Arguments: function An instance of <function>.

initial-value An instance of <object>.

collection An instance of <collection>.

Values: value An instance of <object>.

Description: Returns the result of combining the elements of collection and initial-value 
according to function.

If collection is empty, reduce returns initial-value; otherwise, function is applied 
to initial-value and the first element of collection to produce a new value.  If 
more elements remain in the collection, then function is called again, this time 
with the value from the previous application and the next element from 
collection.  This process continues until all elements of collection have been 
processed.

function is a binary function used to combine all the elements of collection into a 
single value.   Processing is always done in the natural order for collection.

Example

define variable high-score = 10

reduce (max, high-score, #(3, 1, 4, 1, 5, 9))

 ⇒   10

reduce (max, high-score, #(3, 12, 9, 8, 8, 6))

 ⇒   12
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reduce1 [Open Generic Function] 12

Combines the elements of a collection into a single value by repeatedly 
applying a binary function, using the first element of the collection as the seed 
value.

Signature: reduce1 function collection  ⇒   value

Arguments: function An instance of <function>.

collection An instance of <collection>.

Values: value An instance of <object>.

Description: Returns the combination of the elements of collection according to function.

An error is signaled if collection is empty. 

reduce1 is similar to reduce, except that the first element of collection is taken 
as the initial value, and all the remaining elements of collection are processed as 
if by reduce.  (In other words, the first value isn’t used twice.)

For unstable collections, “first” element effectively means “an element chosen 
at random.”  Processing is done in the natural order for collection.

reduce1 (\+, #(1, 2, 3, 4, 5))

 ⇒   15

choose [Open Generic Function] 12

Returns those elements of a sequence that satisfy a predicate.

Signature: choose predicate source-sequence  ⇒   result-sequence

Arguments: predicate An instance of <function>.

source-sequence
An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.
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Description: Returns a sequence containing those elements of source-sequence  that satisfy 
predicate. The result-sequence may or may not be freshly allocated.

choose (even?, #(3, 1, 4, 1, 5, 8, 9))

  ⇒   #(4, 8)

choose-by  [Open Generic Function] 12

Returns those elements of a sequence that correspond to those in another 
sequence that satisfy a predicate.

Signature: choose-by predicate test-sequence value-sequence  ⇒   result-sequence

Arguments: predicate An instance of <function>.

test-sequence An instance of <sequence>.

value-sequence An instance of <sequence>.

Values: result-sequence
An instance of <sequence>.

Description: Returns a sequence containing the elements from value-sequence which 
correspond to elements in test-sequence that satisfy predicate. The result-sequence 
may or may not be freshly allocated.

choose-by (even?, range (from: 1),

             #("a", "b", "c", "d", "e", "f", "g", "h", "i"))

  ⇒   #("b", "d", "f", "h")

Other Mapping Functions 12

member? [Open Generic Function] 12

Returns true if a collection contains a particular value.

Signature: member? value collection #key test  ⇒   boolean

Arguments: value An instance of <object>.
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collection An instance of <collection>.

test An instance of <function>.  The default is ==.

Values: boolean An instance of <boolean>.

Description: Returns true if collection contains value as determined by test. Otherwise returns 
false.

The test function may be non-commutative: it is always called with value as its 
first argument and an element from collection as its second argument.

define constant flavors = #(#"vanilla", #"pistachio", #"ginger")

member? (#"vanilla", flavors)      

 ⇒   #t                                   

member? (#"banana", flavors)

 ⇒   #f

member?  val range  #key test ⇒   boolean [G.F. Method] 12

If range is unbounded, this method is guaranteed to terminate if test is ==.

find-key [Open Generic Function] 12

Returns the key in a collection such that the corresponding collection element 
satisfies a predicate.

Signature: find-key collection function #key skip failure  ⇒   key

Arguments: collection An instance of <collection>.

predicate An instance of <function>.

skip An instance of <integer>. The default is 0.

failure An instance of <object>. The default is #f.

Values: key An instance of <object>.

Description: Returns a key value such that (predicate (element collection key)) is true.  If no 
element in collection satisfies predicate, find-key returns failure.
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The skip argument indicates that the first skip matching elements should be 
ignored.  If skip or fewer elements of collection satisfy predicate, then failure is 
returned. If collection is not stable under iteration, then skip is only useful for 
finding out whether collection contains at least skip elements which satisfy 
predicate; it is not useful for finding a particular element.

flavors

 ⇒   #(#"vanilla", #"pistachio", #"ginger")

find-key (flavors, has-nuts?)

 ⇒   1

flavors[1]

 ⇒   #"pistachio"

remove-key! [Open Generic Function] 12

Modifies an explicit key collection so it no longer has a particular key.

Signature: remove-key! collection key  ⇒  boolean

Arguments: collection An instance of <mutable-explicit-key-collection>.

key An instance of <object>.

Values: boolean An instance of <boolean>.

Description: Modifies collection so that it no longer has a key equal to key.  Equality is 
determined by collection’s key-test function.

The boolean return value will be #t if the key was present and removed, or #f if 
the key was not present and hence not removed.

remove-key! table key   ⇒  table [G.F. Method] 12

There is a predefined method on <table>.

replace-elements! [Open Generic Function] 12

Replaces collection elements that satisfy a predicate.
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Signature: replace-elements! mutable-collection predicate new-value-fn #key  count
⇒   mutable-collection

Arguments: mutable-collection
An instance of <mutable-collection>.

predicate An instance of <function>.

new-value-fn
An instance of <function>.

count An instance of <integer> or #f.  The default is #f.

Values: mutable-collectionAn instance of <mutable-collection>.

Description: Replaces those elements of mutable-collection for which predicate returns true.  
The elements are replaced with the value of calling new-value-fn on the existing 
element.  If count is #f, all of the matching elements are replaced.  Otherwise, 
no more than count elements are replaced.

mutable-collection may be modified by this operation.

define variable numbers = list (10, 13, 16, 19)

replace-elements! (numbers, odd?, double)

 ⇒   #(10, 26, 16, 38)

fill! [Open Generic Function] 12

Fills a collection with a specified value.

Signature: fill! mutable-collection value #key start end  ⇒   mutable-collection

Arguments: mutable-collection
An instance of <collection>.

value An instance of <object>.

start An instance of <integer>.

end An instance of <integer>. 

Values: mutable-collection
An instance of <collection>.
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Description: Modifies mutable-collection so that (element mutable-collection key) returns 
value for every key.

If mutable-collection is a sequence, then start and end keywords may be specified 
to indicate that only a part of the sequence should be filled.  start is considered 
an inclusive bound and defaults to 0; end is an exclusive bound and defaults to 
the length of the sequence.

define variable numbers = list (10, 13, 16, 19)

fill! (numbers, 3, start: 2)

 ⇒   #(10, 13, 3, 3)

The Iteration Protocol 12

forward-iteration-protocol [Open Generic Function] 12

Returns a group of functions used to iterate over the elements of a collection.

Signature: forward-iteration-protocol collection
⇒   initial-state limit next-state finished-state? current-key current-element 
current-element-setter copy-state

Arguments: collection An instance of <collection>.

Values: initial-state An instance of <object>.  The initial iteration state object.

limit An instance of <object>  that is used by the finished-state? 
function to determine whether the iteration has been completed.

next-state An instance of <function>.  Its signature is

next-state collection state ⇒  new-state

This function steps the iteration by producing a new state from 
the associated collection  and state.  The next-state function may 
or may not modify the state  argument; it is an error to use a 
state value after it has been passed to the associated next-state 
function.  The copy-state function provides a mechanism for 
saving a particular state in an iteration for later resumption.  

finished-state? An instance of <function>.  Its signature is

finished-state? collection state limit ⇒  boolean
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This function returns #t if the iteration of the collection has 
been completed, i.e., there are no other elements of the collection 
to consider.  It returns #f otherwise.  It is an error to use a 
finished state in a call to the associated next-state, current-element, 
current-key or current-element-setter functions.

current-key An instance of <function>.  Its signature is

current-key collection state ⇒  key

This function returns the unique key associated with state  in the 
collection.  If the current-key function were called once with each 
state value produced during an iteration over a collection, the 
resulting sequence of values would contain every key from the 
collection exactly once; it would be the key-sequence of the 
collection.

current-element
An instance of <function>.  Its signature is

current-element collection state ⇒  element

This function returns the element of collection currently 
indicated by state.

current-element-setter
An instance of <function>.  Its signature is

current-element-setter value collection state ⇒  value

This function sets the element of collection  indicated by state to 
value  and returns value.  If collection is not an instance of 
<mutable-collection>, or if the value is not of a type 
acceptable to the collection, an error is signaled.

copy-state An instance of <function>.  Its signature is

copy-state collection state ⇒  new-state

This function returns a state which represents the same point in 
the iteration over collection  as is represented by state.  

Description: Returns eight values used to implement iteration over the collection argument. 

Only the collection argument this function was called with may be used as the 
collection argument to functions returned by this function.  Only the initial-state 
object and state objects returned by the next-state and copy-state functions may 
be used as the state argument to functions returned by this function.  Only the 
limit object may be used as the limit argument to the finished-state? function.
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An example of the use of the iteration protocol is the following definition of a 
single-argument version of the do function:

define method do1 (f :: <function>, c :: <collection>)

  let (init, limit, next, end?, key, elt) = 

                     forward-iteration-protocol(c);

  for (state = init then next(c, state),

    until end?(c, state, limit))

    f(elt(c, state));

  end for;

end method do1;

forward-iteration-protocol table  
 ⇒  initial-state limit next-state finished-state? current-key current-element 
current-element-setter copy-state [G.F. Method] 12

The method for <table> implements the iteration protocol in terms of the 
function table-protocol.

backward-iteration-protocol [Open Generic Function] 12

Returns a group of functions used to iterate over the elements of a collection in 
reverse order.

Signature: backward-iteration-protocol collection
⇒   initial-state limit next-state finished-state? current-key current-element 
current-element-setter copy-state

Arguments: collection An instance of <collection>.

Values: initial-state An instance of <object>.

limit An instance of <object>.

next-state An instance of <function>.  

finished-state? An instance of <function>.

current-key An instance of <function>.

current-element
An instance of <function>.

current-element-setter
An instance of <function>.
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copy-state An instance of <function>.  

Description: Returns eight values used to implement reverse iteration over the collection 
argument.

Some collection classes that are stable under iteration support the ability to 
iterate in the reverse of the natural order, by providing a method on the generic 
function backward-iteration-protocol.  The eight values returned by 
this function are analogous to the corresponding values returned by 
forward-iteration-protocol.

The Table Protocol 12

The class <table> provides an implementation of the iteration protocol, using 
the function table-protocol.  Every concrete subclass of <table> must 
provide or inherit a method for table-protocol. A complete description of 
the table protocol is given in “Tables” on page 120.

table-protocol [Open Generic Function] 12

Returns functions used to implement the iteration protocol for a tables.

Signature: table-protocol table ⇒  test-function  hash-function

Arguments: table An instance of <table>.

Values: test-function An instance of <function>.  Its signature is

test-function key1 key2  ⇒  boolean

test-function is used to compare keys.  It returns true if the keys 
are members of the same equivalence class according to the 
table’s equivalence predicate.

hash-function
An instance of <function>.  Its signature is

hash-function key  ⇒  id state

hash-function computes the hash code  of the key, using the hash 
function associated with the table’s equivalence predicate.  The 
hash code is returned as two values, id (an integer) and state (a 
hash state).
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Description: Returns the test-function and hash-function for the <table>. These functions 
are in turn used to implement the other collection operations on <table>.

table-protocol object-table   ⇒  test-function  hash-function [G.F. Method] 12

The method for <object-table> returns ==  as the test-function and 
object-hash as the hash-function.

The method for <object-table> could be written as

define method table-protocol (table :: <object-table>)

      => test-function :: <function>, 

         hash-function :: <function>;

  values(\==, object-hash);

end method table-protocol;

merge-hash-codes [Function] 12

Returns a hash-code created from the merging of two argument hash codes.

Signature: merge-hash-codes id1 state1 id2 state2 #key ordered
  ⇒   merged-id merged-state

Arguments: id1 An instance of <integer>.

state1 An instance of <object>.

id2 An instance of <integer>.

state2 An instance of <object>.

ordered An instance of <boolean>.

Values: merged-id An instance of <integer>.

merged-state An instance of <object>.

Description: Computes a new hash code by merging the argument hash codes in some 
implementation dependent way.

 id1, id2, and merged-id  are all integers.  state1, state2, and merged-state  are all 
hash states.  ordered is a boolean and determines whether the algorithm used to 
perform the merge is permitted to be order dependent.  If false, which is the 
default, then the merged result must be independent of the order in which the 
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argument pairs are provided.  If true, then the order of the argument pairs 
matters because the algorithm used need not be either commutative or 
associative.  Providing a true value for ordered is recommended when doing so 
will not cause the hash function to violate the second constraint on hash 
functions, because it may result in a better distribution of hash ids.

state1 and state2 should be the value of $permanant-hash-state or 
hash-states returned from previous calls to merge-hash-codes or 
object-hash.

object-hash [Function] 12

The hash function for the equivalence predicate ==.

Signature: object-hash object  ⇒   hash-id hash-state

Arguments: object An instance of <object>.

Values: hash-id An instance of <integer>.

hash-state An instance of <object>.

Description: Returns a hash-code for object which corresponds to the equivalence predicate 
==.  It is made available as a tool for writing hash functions in which the object 
identity of some component of a key is to be used in computing the hash code.  
It returns a hash id (an integer) and associated hash state for the object, 
computed in some implementation dependent manner.  The values returned by 
object-hash when called repeatedly on the same object might not be the 
same for each call.  If the hash-id value changes then the hash-state value will 
also change.

Reflective Operations on Types 12

instance? [Function] 12

Tests whether an object is an instance of a type.

Signature: instance? object type   ⇒   boolean
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Arguments: object An instance of <object>.

type An instance of <type>.

Values: boolean An instance of <boolean>.

Description: Returns true if object is a general instance of type.

subtype? [Function] 12

Tests whether a type is a subtype of another type.

Signature: subtype? type1 type2   ⇒   boolean

Arguments: type1 An instance of <type>.

type2 An instance of <type>.

Values: boolean An instance of <boolean>.

Description: Returns true if type1  is a subtype of type2. Subtype rules are given in “The Type 
Protocol” on page 47

object-class [Function] 12

Returns the class of an object.

Signature: object-class object   ⇒   class

Arguments: object An instance of <object>.

Values: class An instance of <class>.

Description: Returns the class of which object  is a direct instance.

all-superclasses [Function] 12

Returns all the superclasses of a class.

Signature: all-superclasses class   ⇒   sequence



C H A P T E R  1 2

The Built-In Functions

Reflective Operations on Types 333

Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>.  Each element in the sequence is an 
instance of <class>.

Description: Returns all the superclasses of class  in a sequence. The order of the classes in 
the sequence will correspond to the class precedence list of class.

The result sequence should never be destructively modified.  Doing so may 
cause unpredictable behavior.  If class  is sealed, an implementation may choose 
to signal an error of type <sealed-object-error> rather than returning the 
sequence of all superclasses.

direct-superclasses [Function] 12

Returns the direct superclasses of a class.

Signature: direct-superclasses class   ⇒   sequence

Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>.  Each element in the sequence is an 
instance of <class>.

Description: Returns the direct superclasses of class  in a sequence.  These are the classes that 
were passed as arguments to make or define class when the class was 
created.  The order of the classes in the sequence is the same as the order in 
which they were passed to define class or make when class was created.

The result sequence should never be destructively modified.  Doing so may 
cause unpredictable behavior. If class is sealed, an implementation may choose 
to signal an error of type <sealed-object-error> rather than returning the 
direct superclasses.

direct-subclasses [Function] 12

Returns the direct subclasses of a class.

Signature: direct-subclasses class   ⇒   sequence
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Arguments: class An instance of <class>.

Values: sequence An instance of <sequence>.  Each element in the sequence is an 
instance of <class>.

Description: Returns the direct subclasses of  class  in a sequence.  These are the classes that 
have class as a direct superclass.  The order of the classes in the sequence is not 
significant.

The result sequence should never be destructively modified.  Doing so may 
cause unpredictable behavior. If class is sealed, an implementation may choose 
to signal an error of type <sealed-object-error> rather than returning the 
direct subclasses.

Functional Operations 12

The following operations are used to create new functions from other functions 
or objects.  Often the Dylan compiler will have special knowledge of these 
operations, to allow for efficient in-line compilation.

compose [Function] 12

Returns the composition of one or more functions.

Signature: compose function1 #rest more-functions   ⇒   function

Arguments: function1 An instance of <function>.

more-functions Instances of <function>.

Values: function An instance of <function>.

Description: When called with just a single argument, compose returns that argument.

When called with two arguments, compose returns a function that applies the 
second function to its arguments and then applies the first function to the 
(single) result value.
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With three or more arguments, compose composes pairs of argument 
functions, until a single composite function is obtained.  (It doesn’t matter if the 
pairings are done from the left or from the right, as long as the order of 
application is preserved.)

define constant number-of-methods =

  compose(size, generic-function-methods)

define constant root-position = compose(position, root-view) 

complement [Function] 12

Returns a function that expresses the complement of a predicate.

Signature: complement predicate   ⇒   function

Arguments: predicate An instance of <function>.

Values: function An instance of <function>.

Description: Returns a function that applies predicate  to its arguments.  If the predicate 
returns #f, the complement returns #t; otherwise, the complement returns #f. 
For example, odd? could be defined as complement(even?).

choose(complement(zero?), #(1, 3, 0, 4, 0, 0, 3))

  ⇒   #(1, 3, 4, 3)

disjoin [Function] 12

Returns a function that expresses the disjunction of one or more predicates.

Signature: disjoin predicate1 #rest more-predicates   ⇒   function

Arguments: predicate1 An instance of <function>.

more-predicates
Functions.

Values: function An instance of <function>.
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Description: Returns a single function, termed the disjunction of its argument functions.  
The disjunction accepts any number of arguments and operates by applying 
the predicates, in order, to the arguments.  If any of the predicates returns true, 
the remaining predicates (if any) are not applied, and the true result is 
returned.  Otherwise, all the predicates will be applied, and #f returned.

A disjunction is similar to an | expression of calls to the predicates.

define constant nonzero? = disjoin(positive?, negative?);

nonzero?(4)

 ⇒   #t

conjoin [Function] 12

Returns a function that expresses the conjunction of one or more predicates.

Signature: conjoin predicate1 #rest more-predicates   ⇒   function

Arguments: predicate1 An instance of <function>.

more-predicates
Instances of <function>.

Values: function An instance of <function>.

Description: Returns a single function, termed the conjunction of its argument functions.  
The conjunction accepts any number of arguments and operates by applying 
the predicates, in order, to the arguments.  If any of the predicates returns #f, 
the remaining predicates (if any) are not applied and #f is immediately 
returned.  Otherwise, all the predicates will be applied, and the result of the last 
application is returned.

A conjunction is similar to an & expression of calls to the predicates.

choose(conjoin(positive?, integral?), #(-1, -3, 5, -3.7, 3.5, 7))

  ⇒  #(5, 7)

curry [Function] 12

Returns a function based on an existing function and a number of default 
initial arguments.
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Signature: curry function #rest curried-arguments   ⇒   new-function

Arguments: function An instance of <function>.

curried-arguments
Instances of <object>.

Values: new-function An instance of <function>.

Description: Returns a function that applies function to curried-arguments plus its own 
arguments, in that order. For example curry (\>, 6) is a predicate that 
returns true for values less than 6; curry (\=, "x") is a predicate that tests 
for equality with the string "x"; curry (\+, 1) is an incrementing function; 
curry (concatenate, "set-") is a function that concatenates the string 
"set-" to any additional sequences it is passed.

define constant all-odd? = curry(every?, odd?)

all-odd?(list(1, 3, 5))

 ⇒  #t

define constant less-than-10? = curry(\>, 10)

less-than-10?(4)

 ⇒  #t

rcurry [Function] 12

Returns a function based on an existing function and a number of default final 
arguments.

Signature: rcurry function #rest curried-arguments   ⇒   new-function

Arguments: function An instance of <function>.

curried-arguments
Instances of <object>.

Values: new-function An instance of <function>.

Description: Returns a function that applies function to curried-arguments plus its own 
arguments, with the curried-arguments occuring last.
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rcurry (“right” curry) operates just like curry, except it allows the rightmost 
arguments of function to be specified in advance, rather than the leftmost 
arguments.  For example, rcurry (\>, 6) is a predicate that returns true for 
values greater than 6.

define constant number? = rcurry(instance?, <number>)

number?(4) 

 ⇒  #t

number?("string")

 ⇒  #f

define constant greater-than-10? = rcurry(\>, 10)

greater-than-10?(4)

 ⇒  #f

always [Function] 12

Returns a function that always returns a particular object.

Signature: always object   ⇒   function

Arguments: object An instance of <object>.

Values: function An instance of <function>.

Description: Returns a function that can be called with any number of arguments.  The 
function ignores its arguments and always returns object.

define constant menu = always("spam!")

menu("today") 

 ⇒  "spam!"

menu("tomorrow")  
 ⇒  "spam!"

menu(4, 5, 6)

 ⇒  "spam!"
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Function Application 12

apply [Function] 12

Applies a function to arguments.

Signature: apply function argument #rest more-arguments   ⇒   #rest values

Arguments: function An instance of <function>.

argument An instance of <object> or, if there are no more-arguments, an 
instance of <sequence>.

more-arguments
Instances of <object>.  The last more-arguments must be an 
instance of <sequence>.

Values: values Instances of <object>.

Description: Calls function and returns the values which function returns.  The argument and 
more-arguments supply the arguments to function. All but the last of argument 
and more-arguments are passed to function individually. The last of argument and 
more-arguments must be a sequence.  This sequence is not passed as a single 
argument to function.  Instead, its elements are taken individually as arguments 
to function.

apply(max, list(3, 1, 4, 1, 5, 9))

  ⇒   9

apply(min 5, 7 list(3, 1, 4))

  ⇒   1

define constant make-string =

       method (#rest init-args) => string :: <string>;

         apply(make, <string>, init-args)

       end;

make-string(fill: 'a', size: 10)

  ⇒   "aaaaaaaaaa"
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Reflective Operations on Functions 12

generic-function-methods [Function] 12

Returns the methods of a generic function.

Signature: generic-function-methods generic-function  ⇒   sequence

Arguments: generic-function
An instance of <generic-function>.

Values: sequence An instance of <sequence>.  Each element in the sequence is an 
instance of <method>.

Description: Returns a sequence of all of the methods in generic-function.  The order of the 
methods in the sequence is not significant. The sequence returned should never 
be destructively modified.  Doing so may cause unpredictable behavior.

If generic-function is sealed, an implementation may choose not to return a 
sequence of methods, but instead signal an error of type 
<sealed-object-error>.

add-method  [Function] 12

Adds a method to a generic function.

Signature: add-method generic-function method   ⇒   new-method old-method

Arguments: generic-function
An instance of <generic-function>.

method An instance of <method>.

Values: new-method An instance of <method>.

old-method #f or an instance of <method>.

Description: Adds method to generic-function, thereby modifying the generic-function.
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Programs do not commonly call add-method directly.  It is called by define 
method.

If you add a method to a generic function, and the generic function already has 
a method with the exact same specializers, then the old method is replaced 
with the new one.

A single method may be added to any number of generic functions.

add-method returns two values.  The first is the new method.  The second will 
be either the method in generic-function which is being replaced by method, or it 
will be #f if no method is being replaced.

add-method may signal an error of type <sealed-object-error> if 
adding the method or replacing an existing method would cause a sealing 
violation.

generic-function-mandatory-keywords [Function] 12

Returns the mandatory keywords of a generic function, if any.

Signature: generic-function-mandatory-keywords generic-function  ⇒   keywords

Arguments: generic-function
An instance of <generic-function>.

Values: keywords The object #f or an instance of <collection>.

Description: If generic-function  accepts keyword arguments, returns a collection of the 
mandatory keywords for generic-function.  This collection will be empty if the 
generic function accepts keywords but does not have any mandatory 
keywords. It returns #f if generic-function does not accept keyword arguments.

The collection returned should never be destructively modified.  Doing so may 
cause unpredictable behavior.

function-specializers [Function] 12

Returns the specializers of a function.

Signature: function-specializers function   ⇒   sequence
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Arguments: function An instance of <function>.

Values: sequence An instance of <sequence>.  The elements of the sequence are 
instances of <type>.

Description: Returns a sequence of the specializers for function.  The length of the sequence 
will equal the number of required arguments of function.  The first element of 
the sequence will be the specializer of the first argument of function, the second 
will be the specializer of the second argument, etc.

The sequence returned should never be destructively modified.  Doing so may 
cause unpredictable behavior.

function-arguments [Function] 12

Returns information about the arguments accepted by a function.

Signature: function-arguments function  ⇒   required-number rest-boolean kwd-sequence

Arguments: function An instance of <function>.

Values: required-number
An instance of <integer>.

rest-boolean An instance of <boolean>.

kwd-sequence
Either #f or the symbol #”all” or an instance of 
<collection> whose elements are instances of <keyword>.

Description: Returns three values:

■ required-number is the number of required arguments accepted by the 
function.

■ rest-boolean indicates whether the function accepts a variable number of 
arguments.

■ kwd-sequence indicates whether the function accepts keyword arguments. If 
the value is #f then the function does not accept keyword arguments.  
Otherwise, the function does accept keyword arguments, and the value is 
either a collection of the keywords which are permissible for any call to the 
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function, or the symbol #”all” if all keywords are permitted by the 
function.

Note that particular calls to a generic function may accept additional keywords 
not included in the third value returned by function-arguments, by virtue 
of their being recognized by applicable methods.

function-return-values [Function] 12

Returns information about the values returned by a function.

Signature: function-return-values function  ⇒   return-value-types rest-return-value

Arguments: function An instance of <function>.

Values: return-value-types
An instance of <sequence>.  The elements of the sequence are 
instances of <type>.

rest-return-value
An instance of <type> or #f.

Description: Returns two values:

■ return-value-types is a sequence of the types of values returned by the 
function. The length of the sequence equals the number of required return 
values of the function.  The first element of the sequence is the type of the 
first return value, the second is the type of the second return value, etc. This 
sequence returned should never be destructively modified.  Doing so may 
cause unpredictable behavior.

■ rest-return-value is a indicates whether the function returns a variable 
number of values and, if so, the type of values which may be returned after 
the required return values.  If the function does not return a variable number 
of values, #f is returned; otherwise a type is returned.

applicable-method?   [Function] 12

Tests if a function is applicable to sample arguments.

Signature: applicable-method? function #rest sample-arguments   ⇒   boolean
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Arguments: function An instance of <function>.

sample-arguments
Instances of <object>.

Values: boolean An instance of <boolean>.

Description: Returns true if function is a method or contains a method that would be 
applicable to sample-arguments.

sorted-applicable-methods [Function] 12

Returns all the methods in a generic function that are applicable to sample 
arguments, sorted in order of specificity.

Signature: sorted-applicable-methods generic-function  #rest sample-arguments 
  ⇒   sorted-methods unsorted-methods

Arguments: generic-function
An instance of <generic-function>.

sample-arguments
Instances of <object>.

Values: sorted-methods
An instance of <sequence>.  Elements of the sequence are 
instances of <method>.

unsorted-methods
An instance of <sequence>.  Elements of the collection are 
instances of <method>.

Description: Returns two sequences that, taken together, contain the methods in 
generic-function that are applicable to the sample-arguments.  sorted-methods  
contains methods that are more specific than every method that follows them.  
unsorted-methods begins at the first point of ambiguity; it contains the methods 
that cannot be sorted.

The sequences returned should never be destructively modified.  Doing so may 
cause unpredictable behavior.
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find-method   [Function] 12

Returns the method in a generic function that has particular specializers.

Signature: find-method generic-function specializers   ⇒   found-method

Arguments: generic-function
An instance of <generic-function>.

specializers An instance of <sequence>.  Elements of the sequence are 
instances of <type>.

Values: found-method #f or an instance of <method>.

Description: Returns the method in generic-function that has the specializers in specializers as 
its specializers.  The specializers must match exactly for a method to be 
returned.

If generic-function is sealed, an implementation may choose to signal an error of 
type <sealed-object-error> rather than return a value.

remove-method [Function] 12

Removes a method from a generic function.

Signature: remove-method generic-function method   ⇒   method

Arguments: generic-function
An instance of <generic-function>.

method An instance of <method>.

Values: method An instance of <method>.

Description: Removes method from generic-function and returns method.

This operation modifies the generic-function.

remove-method will signal an error if method is not in generic-function.  If 
generic-function is sealed, or if method  is in an inert domain of generic-function , 
then an error of type <sealed-object-error> is signaled.
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Operations on Conditions 12

Signaling Conditions 12

signal [Function] 12

Signals a condition.

Signatures: signal   condition   ⇒   values
signal   string #rest arguments   ⇒   values

Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>.

arguments Instances of <object>.

Values: values Instance of <object>.

Description: Signals the condition, trying each active dynamic handler, the most recent first.  
If all dynamic handlers decline, signal calls default-handler(condition).  
If a handler returns, all the values that it returned are returned from signal.  If 
signal returns when condition’s recovery protocol does not allow returning, 
some handler has violated protocol; signal does not check for this error.  If 
condition is a restart, the caller of signal should always assume that it might 
return.

The second form signals a condition of type <simple-warning>. 

error [Function] 12

Signals a non-recoverable error.

Signatures: error   condition   ⇒   {will never return}
error  string #rest arguments   ⇒   {will never return}
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Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>.

arguments Instances of <object>.

Values: None.  error will never return.

Description: error is similar to signal but never returns; if a handler returns, error 
invokes the debugger immediately.  error is used to make it clear that a 
program does not expect to receive control again after signaling a condition 
and might enable the compiler to generate slightly more compact code.

The second form signals a condition of type <simple-error>.

cerror [Function] 12

Signals a correctable error.

Signatures: cerror   restart-description condition   ⇒   false
cerror   restart-description string #rest arguments  ⇒   false

Arguments (1): restart-description
An instance of <string>, interpreted as a format string.

condition An instance of <condition>.

Arguments (2): restart-description
An instance of <string>, interpreted as a format string.

string An instance of <string>.

arguments Instances of <object>.

Values: false #f.

Description: cerror is the same as error but first establishes a handler for 
<simple-restart>, with a format string of restart-description and format 
arguments of a sequence containing the arguments.

If the restart handler is invoked, cerror returns #f; otherwise, cerror never 
returns.  If cerror returns, the program should take the corrective actions 



C H A P T E R  1 2  

The Built-In Functions

348 Operations on Conditions

promised in the restart-description.  cerror is the standard way to signal 
correctable errors when no special class of restart condition is required.

break [Function] 12

Invokes the debugger.

Signatures: break   condition  ⇒   false
break   string #rest arguments   ⇒   false
break  ⇒   false

Arguments (1): condition An instance of <condition>.

Arguments (2): string An instance of <string>, interpreted as a format string.

arguments Instances of <object>, interpreted as format arguments.

Arguments (3): None.

Values: false #f.

Description: Obtains a condition in the same way as signal but then invokes the debugger 
immediately without signaling first.  break establishes a <simple-restart> 
so the debugger can continue execution.  This is useful for breakpoints.  break 
always returns #f.  With no arguments, a default message string is used.

check-type [Function] 12

Checks an object to ensure that it is an instance of a specified type.

Signature: check-type value type   ⇒   value

Arguments: value An instance of <object>.

type An instance of <type>.

Values: value An instance of <object>.

Description: Checks value to ensure that it is an instance of type, and signal an error of type 
<type-error> if it is not.
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abort [Function] 12

Aborts and never returns.

Signature: abort

Arguments: None.

Values: None.  abort will never return.

Description: Performs error(make (<abort>)).

This function is provided as a convenient shortcut.  The call is to error, rather 
than to signal, to guarantee that abort will never return.

Handling Conditions 12

default-handler [Open Generic Function] 12

Called if no dynamic handler handles a condition.

Signature: default-handler condition   ⇒   values

Arguments: condition An instance of <condition>.

Values: values Instances of <object>.

Description: Called if no dynamic handler handles a condition.

default-handler condition ⇒   false [G.F. Method] 12

A predefined method on <condition> simply returns #f.

default-handler serious-condition ⇒   {does not return} [G.F. Method] 12

A predefined method on <serious-condition> invokes an 
implementation-defined debugger.
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default-handler warning ⇒   false [G.F. Method] 12

A predefined method on <warning> prints the warning’s message in an 
implementation-defined way and then returns #f.

default-handler restart ⇒   {does not return} [G.F. Method] 12

A predefined method on <restart> signals an error.

restart-query [Open Generic Function] 12

Called to query the user and restart.

Signature: restart-query restart   ⇒   values

Arguments: restart An instance of <restart>.

Values: values Instances of <object>.

Description: Engages the interactive user in a dialog and stores the results in slots of restart.

This function is designed to be called from a handler, after making a restart and 
before signaling it.  The debugger uses restart-query, for example.  There is 
a default method for <restart> which does nothing.

return-query [Open Generic Function] 12

Called to query the user and return.

Signature: return-query condition   ⇒   values

Arguments: condition An instance of <condition>.

Values: values Instances of <object>.

Description: If the recovery protocol of condition allows returning values, this engages the 
program user in a dialog and returns the results as any number of values, 
which the handler should return.
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return-query should not be called if return-allowed? returns #f. 
Programs which define condition classes whose recovery protocol allows 
returning values should ensure that there is an appropriate method for this 
function defined on or inherited by the condition class.

Introspection on Conditions 12

do-handlers [Function] 12

Applies a function to all dynamically active handlers.

Signature: do-handlers function   ⇒   false

Arguments: function An instance of <function>.

Values: false #f.

Description: Applies function to all dynamically active handlers, the most recently 
established first.  function receives four arguments: type, test, function, and 
init-arguments.  The arguments describe a dynamically active handler.  All 
arguments have dynamic extent and must not be modified.  test defaults to a 
function that always returns #t.  init-arguments will be an empty sequence if it 
was not supplied by the handler.

return-allowed? [Open Generic Function] 12

Returns true if a condition’s recovery protocol allows returning values.

Signature: return-allowed? condition   ⇒   boolean

Arguments: condition An instance of <condition>.

Values: boolean An instance of <boolean>.

Description: Returns #t if the recovery protocol of condition allows returning values, or #f if 
it does not.
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There is a default method for <condition> that returns #f. Programs which 
define condition classes whose recovery protocol allows returning values 
should ensure that there is an appropriate method for this function defined on 
or inherited by the condition class.

return-description [Open Generic Function] 12

Returns a description of a condition’s returned values.

Signature: return-description condition  ⇒   description

Arguments: condition An instance of <condition>.

Values: description #f or an instance of <string> or an instance of <restart>. 

Description: If the recovery protocol of this condition allows returning values, 
return-description returns a description of the meaning of returning 
values.

This description can be a restart, a string, or #f.  return-description should 
not be called if return-allowed? returns #f.  If you define your own 
condition class whose recovery protocol allows returning values, you need to 
define a method for return-description unless the inherited method is 
suitable.

condition-format-string [Function] 12

Returns the format string of a simple condition.

Signature: condition-format-string simple-condition   ⇒  format-string

Arguments: simple-condition
An instance of <simple-error>, <simple-warning>, or 
<simple-restart>.

Values: format-string An instance of <string>.

Description: Returns the format string that was supplied as an initialization argument when 
the simple-condition was created.
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condition-format-arguments [Function] 12

Returns the format arguments of a simple condition.

Signature: condition-format-arguments simple-condition   ⇒  format-args

Arguments: simple-condition
An instance of <simple-error>, <simple-warning>, or 
<simple-restart>.

Values: format-args An instance of <sequence>.

Description: Returns the sequence of format arguments that was supplied as an 
initialization argument when the simple-condition was created.

type-error-value [Function] 12

Returns the value which was not of the expected type.

Signature: type-error-value type-error   ⇒  object

Arguments: type-error An instance of <type-error>.

Values: object An instance of <object>.

Description: Returns the value which was not of the expected type, and thereby led to the 
type error.

type-error-expected-type [Function] 12

Returns the expected type of the type check that led to the type error.

Signature: type-error-expected-type type-error   ⇒  type

Arguments: type-error An instance of <type-error>.

Values: type An instance of <type>.

Description: Returns the expected type of the type check that led to the type error.
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#t

 

[<boolean>] 13

 

The canonical true value.

 

#f

 

[<boolean>] 13

 

The false value.

 

$permanent-hash-state

 

[<object>] 13

 

A hash state that is always valid.

This is an implementation-dependent hash state that indicates that the 
associated hash id is always valid, and does not depend on any mutable 
property of the object that can be changed without a visible modification to the 
object.

 

#()

 

[<empty-list>] 13

 

The empty list.
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Overview 14

 

This chapter contains descriptions of the built-in macros, special definitions, 
and special operators defined by Dylan.

The syntax used in this chapter is described in “Manual Notation” on page 6.

 

Definitions 14

 

Definitions are used to declare the overall structure of a program. They often 
define one or more module bindings, but do not always do so. Definitions can 
only appear at top level in a program. Definitions do not return values.
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define variable

 

Defines and initializes a variable binding 
in the current module.

362

 

define constant

 

Defines and initializes a constant binding 
in the current module.

363

 

define generic

 

Defines a constant binding in the current 
module and initializes it to a new generic 
function.

364

 

define method

 

Adds a method to a generic function, and 
potentially defines a constant binding in 
the current module containing a new 
generic function.

365

 

define class

 

Defines a constant binding in the current 
module and initializes it to a new class.

366

 

define module

 

Defines and names a module, describing 
the imports and exports of the module.

369
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define variable

 

[Definition] 14

 

Defines and initializes a variable binding in the current module.

 

Macro Call:

 

define

 

 { 

 

adjective

 

 

 

}* 

 

variable

 

 

 

variables

 

 

 

=

 

 

 

init

 

Arguments:

 

adjective

 

unreserved-name

 

bnf

 

.  The adjectives allowed are implementation 
dependent.

 

variables

 

variable

 

bnf

 

 | 

 

(

 

 

 

variable-list

 

bnf

 

 

 

)

 

init

 

expression

 

bnf

 

Description:

 

define variable

 

 creates variable bindings in the current module.

The values returned by 

 

init

 

 are used to initialize the bindings.  The first value 
returned is bound to the first 

 

variable

 

, the second value to the second 

 

variable

 

, 
etc.  The last 

 

variable

 

 may be preceded by 

 

#rest

 

, in which case it is bound to a 
sequence containing all the remaining values.

If more than one binding is defined, the 

 

variables

 

 are enclosed in parentheses 
and separated by commas.

 

define variable *elapsed-time* = 0;

define variable (*whole-part*, *remainder*) = truncate(*amount*);

define variable (*first-value*, #rest *rest-values*)

                 = get-inital-orders();

 

define library

 

Defines and names a library, describing 
the imports and exports of the library.

374

 

define domain

 

Restricts the ways in which a generic 
function and set of types can be extended, 
thereby enabling additional error 
checking and compiler optimization.

376

 

define macro

 

Defines a constant module binding 
containing a macro.

377
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Module bindings may be specialized.  This ensures that their value will always 
be of a given type.  An attempt to initialize or assign the binding to a value not 
of that type will signal an error of type 

 

<type-error>

 

.

 

define variable *elapsed-time* :: <integer> = 0;

define variable *front-window* :: union (<window>, singleton(#f))

                 = initial-front-window();

define variable (*whole-part* :: <integer>, *remainder* :: 

<real>)

                 = truncate(*amount*);

 

define constant

 

[Definition] 14

 

Defines and initializes a constant binding in the current module. 

 

Macro Call:

 

define

 

 { 

 

adjective

 

 }* 

 

constant

 

 

 

constants

 

 

 

=

 

 

 

init

 

Arguments:

 

adjective

 

unreserved-name

 

bnf

 

. The adjectives allowed are implementation 
dependent.

 

constants

 

variable

 

bnf

 

 | 

 

(

 

 

 

variable-list

 

bnf

 

 

 

)

 

init

 

expression

 

bnf

 

Description:

 

Creates constant bindings in the current module.

The values returned by 

 

init

 

 are used to initialize the constant bindings.  The 
first value returned is bound to the first 

 

constant

 

, the second value to the second 

 

constant

 

, etc.  The last 

 

constant

 

 may be preceded by 

 

#rest

 

, in which case it is 
bound to a sequence containing all the remaining values.

If more than one 

 

constant

 

 is defined, the 

 

constants

 

 are enclosed in parentheses 
and separated by commas.

 

define constant $start-time = get-current-time();

define constant $pi = 3.14159;

define constant ($whole-pie, $piece-pie) = truncate($pi);
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Module constants may be specialized.  This ensures that their value is of a 
given type.  An attempt to initialize the constant to a value not of that type will 
signal an error of type 

 

<type-error>

 

.

 

define constant $start-time :: <integer> = get-current-time();

 

A constant binding cannot be assigned a new value.  However, the object 
which is the value of the constant binding is not necessarily itself immutable.  
For example, if a constant binding contains a sequence, the elements of the 
sequence may be settable.

 

define generic [Definition] 14

 

Defines a constant binding in the current module and initializes it to a new 
generic function.

 

Macro Call:

 

define

 

 { 

 

adjective

 

 }* 

 

generic

 

 

 

name parameter-list

 

 [ 

 

options

 

 ]

 

Arguments:

 

adjective

 

unreserved-name

 

bnf

 

.  The allowed adjectives are 

 

sealed

 

 and 

 

open

 

. These adjectives are mutually exclusive. The default is 

 

sealed

 

. Additional implementation-defined adjectives may be 
supported.

 

name

 

variable-name

 

bnf

 

parameter-list

 

(

 

 [ 

 

parameters

 

bnf ] )  [ => values ]

options comma-property-listbnf

values variablebnf | ( [ values-listbnf ] )

Description: define generic is used to define generic functions.

It creates a constant module binding with the name name, and initializes it to a 
new generic function described by the adjectives, parameter-list and options.

The adjectives specify whether the generic function is sealed. A complete 
description of generic function sealing is given in“Declaring Characteristics of 
Generic Functions” on page 133.

The parameter-list specifies the parameters and return values of the generic 
function and thereby constrains which methods may be added to it.  For a 
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complete description of these constraints, see “Parameter List Congruency” on 
page 91.

The options are alternating keywords and values.  No options are defined by the 
language.  They may be supplied by individual implementations.

The following example defines a generic function of two required arguments 
and one return value.  All methods added to the generic function must also 
take two arguments and return one value.  The first argument will always be 
specialized to a subtype of <animal>, the second argument will always be 
specialized to a subtype of <number>, and the return value will always be 
specialized to a subtype of <number>.

define generic cut-hair (subject :: <animal>, new-length :: 

<number>)

                          => (new-length :: <number>)

The use of the same name for a parameter and return value indicates that the 
parameter is returned as the value.  This is only a convention;  it is not enforced 
by the language.

The following example defines a generic function with one required parameter 
and one mandatory keyword parameter, strength:.  Methods added to the 
generic function must have one required parameter, they must accept keyword 
arguments, and they must permit the keyword argument strength:.

define generic brew (brand :: <coffee-brand>, #key strength)

                             => (coffee :: <coffee>)

define method [Definition] 14

Adds a method to a generic function, and potentially defines a constant 
binding in the current module containing a new generic function.

Macro Call: define { adjective }* method name parameter-list 
    [ body ]
end [ method ] [ name ]

Arguments: adjective unreserved-namebnf.  The allowed adjective is inert. Additional 
implementation-defined adjectives may be supported.

name variable-namebnf
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parameter-list
parameter-listbnf

body bodybnf

Description: define method creates a method and adds it to the generic function in name.  
If the module binding name  is not already defined, it is defined as with 
define generic.  Thus,  define method will create a new generic function 
or extend an old one, as needed.

The adjective allows a sealing declaration to be made about the generic function 
to which the method is added. The effect of this adjective is described in 
“Abbreviations for Define Inert Domain” on page 136. 

The parameter-list  describes the parameters and return values of the method, 
including their number and type.  The method can be called only with 
arguments that match the types of the parameters, and the method will always 
return values in the quantity and typed declared.  Methods added to a generic 
function must have parameter lists that are congruent with the generic 
function’s parameter list.  A complete description of parameter lists is given in 
“Parameter Lists” on page 82.

When the method is called, new local bindings are created for the parameters,  
initialized to the arguments of the call.  The body  is then executed in the 
environment containing these bindings.

define method tune (device :: <radio>) => (station :: <station>)

  // method body goes here

end method tune

define class [Definition] 14

Defines a constant binding in the current module and initializes it to a new 
class. 

Macro Call: define { class-adjective }* class name ( { superclass } ,+ )
   { slot-spec | init-arg-spec | inherited-slot-spec } ;*
end [ class ] [ name ]
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Arguments: class-adjective
unreserved-namebnf. The allowed adjectives are abstract, 
concrete, primary, free, sealed, and open. Additional 
implementation-dependent class-adjectives may be supported.

name variable-namebnf

superclass expressionbnf

slot-spec { slot-adjective }* [ allocation ]
slot getter-name [ :: type ] [ init-expression ]
{ , slot-option  }*

init-arg-spec [ required ] keyword symbolbnf [ init-expression ]
{ , init-arg-option  }*

inherited-slot-spec
inherited slot getter-name [ init-expression ]
{ , inherited-option  }*

slot-adjective unreserved-namebnf. Supported slot-adjectives are constant 
and inert. Additional implementation-dependent 
slot-adjectives may be supported.

allocation unreserved-namebnf. Supported allocations are instance, 
class, each-subclass, and virtual. Additional 
implementation-defined allocations may be supported.

getter-name variable-namebnf

type operandbnf

init-expression  = expressionbnf

slot-option setter-option  |
init-keyword-option  |
required-init-keyword-option  |
init-value-option  |
init-function-option  |
type-option

init-arg-option type-option  |
init-value-option  |
init-function-option

inherited-option
init-value-option  |
init-function-option

setter-option setter: { variable-namebnf | #f }



C H A P T E R  1 4  

The Built-In Macros and Special Operators

368 Definitions

init-keyword-option
init-keyword: symbolbnf

required-init-keyword-option
required-init-keyword: symbolbnf

init-value-option
init-value: expressionbnf

init-function-option
init-function: expressionbnf

type-option type: expressionbnf

Description: define class is used to define classes.

It creates a constant module binding with the name name, and initializes it to a 
new class.

The class-adjectives provide sealing information about the class. Among the 
adjectives, abstract and concrete are mutually exclusive, primary and 
free are mutually exclusive, and sealed and open are mutually exclusive.  
Additional implementation-defined adjectives may be supported.  See 
“Declaring Characteristics of Classes” on page 132 for a complete description 
of these adjectives.

The superclasses are the classes from which the new class directly inherits. The 
rules of inheritance are described in “Class Inheritance” on page 51 and 
“Computing the Class Precedence List” on page 52.

The init-expression, required-init-keyword-option, init-value-option, and 
init-function-option are all mutually exclusive in a single slot-spec, init-arg-spec, 
or inherited-slot-spec.

Each slot-spec describes a slot specification in the class.  Slot specifications are 
described in “Slot Specifications” on page 57

Each init-arg-spec describes the handling of an initialization argument 
specification of the class.  Initialization argument specifications are described in 
“Initialization Argument Specifications” on page 67. 

Each inherited-slot-spec describes an inherited slot specification of the class.  
Inherited slot specifications are described in  “Inherited Slot Specifications” on 
page 66.
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define module [Definition] 14

Defines and names a module, describing the imports and exports of the 
module.

Macro Call: define module module-name
   { export-clause | create-clause |use-clause  } ;*
end [ module ] [ module-name ]

Arguments: module-name namebnf

export-clause export { ordinary-namebnf } ,*

create-clause create { ordinary-namebnf } ,* 

use-clause use used-module { ,option }*

used-module ordinary-namebnf

option import-option |

exclude-option |

prefix-option |

rename-option |

export-option 

import-option import: all | { { variable-spec } ,* }

variable-spec namebnf [ => namebnf ]

exclude-option exclude: { { namebnf } ,* }

prefix-option prefix: string-literalbnf

rename-option rename: { { namebnf => namebnf } ,* }

export-option export: all | { { namebnf } ,* }

Description: define module defines a module with the given name.  It describes which 
modules are used by the module being defined, which bindings are imported 
from the used modules, and which bindings are exported by the module being 
defined.

Circular use relationships among modules are not allowed.  The graph of the 
module-uses-module relation must be directed and acyclic.

Like other definitions, module definitions are only allowed at top level.  Like 
all constituents, module definitions are contained in a module.  The names of 
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bindings being imported and exported in a module definition refer to bindings 
in the module being defined and the modules being used.  These are not 
affected by the module which contains the module definition.

There is no prohibition against macros which expand into module definitions.

■ module-name is the name of the module being defined.  Note that no binding 
is created for this name.  The namespaces of modules, libraries, and bindings 
are distinct.  The module name is scoped within the library containing the 
module.

■ An export-clause  specifies bindings that are to be exported from the module 
being defined.  Each name  is the name of one such binding.  These bindings 
must be defined by a definition in the module being defined.  It is an error if 
any of the bindings were imported from other modules.   It is allowed for 
the same name to appear more than once, since this is sometimes useful for 
documentation purposes.

■ A create-clause specifies that the named bindings are to be declared owned by 
and exported from the module being defined.  Each name is the name of a 
binding to declare and export.  These bindings must not be defined by a 
definition in the module being defined, and they must not be imported from 
another module.  They must be defined by a definition in a module which 
uses the module being defined.   It is allowed for the same name to appear 
more than once, since this is sometimes useful for documentation purposes.

■ Each use-clause describes a set of bindings to be imported from another 
module.  There may be multiple use clauses and there may even be multiple 
use clauses importing from the same module.  If there are multiple use 
clauses importing from the same module, the bindings imported are the sum 
of the binding imported by each use clause.  Because of renaming, it is 
possible for the same binding to imported multiple times under different 
names.  This is not an error.
Within a use clause, the used-module is the name of the module being used, 
and the options control which bindings are to be imported from that 
module, whether and how they should be renamed, and whether they 
should be rexported from the module being defined.   Each of these options 
applies within the scope of the particular use clause, and does not affect the 
behavior of other use clauses (even if the other use clauses indicate the same 
module).  The various options  may each appear no more than once in a 
single use clause.  They may appear in any order.
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n An import-option describes which bindings should be imported.  It can be 
the name all, or a series of comma-delimited variable-specs enclosed in 
curly braces.  The default is all, indicating that all bindings should be 
imported.  If a series of variable-specs is specified, only the indicated 
variables are imported.

 

n A variable-spec is a name, or two names separated by an arrow.  In the first 
form, the binding has the same name in the module being used and the 
module being defined.  In the second form the binding is renamed as it is 
imported.  The name preceding the arrow is the name of the binding in 
the module being used, and the name following the arrow is the name of 
the binding in the module being defined.

 

n  An exclude-option indicates bindings which should not be imported from 
the module being used.  The default is the empty set.  This option may 
only specify a non-empty set if the import option is all.

 

n A prefix-option indicates a prefix to be given to all binding names as they 
are imported.  This option can be overriden for individual bindings by 
supplying a renaming in a rename option or import option.  The default 
prefix option is the empty string.

 

n A rename-option indicates how individual bindings should be renamed as 
they are imported.  It is a comma-delimited series of entries surrounded 
by curly braces.  Each entry is a pair of names separated by an arrow.  The 
name preceding the arrow is the name of the binding in the module being 
used, and the name following the arrow is the name of the binding in the 
module being defined.  The default for this option is the empty set.

 

n An export-option indicates which imported bindings should be rexported 
from the module being defined.  It can be the name all, or a series of 
comma-delimited names enclosed in curly braces.  Each name is the name 
of the binding in the module being defined as well as the name under 
which it will be exported.  (There is no option to rename on export)  Each 
binding indicated must have been imported by this use clause.  It is 
allowed for the same name  to appear more than once, as this is 
sometimes useful for documentation purposes.  all indicates that all the 
bindings imported by this use clause should be exported.  The default 
value for this option is the empty set.

define module graphics

  use dylan;

  create draw-line,

         erase-line,
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         invert-line,

         skew-line

         frame-rect,

         fill-rect,

         erase-rect,

         invert-rect;

end module graphics;

define module lines

  use dylan;

  use graphics,

import: {draw-line,

             erase-line,

             invert-line,

             skew-line};

end module lines;

define module rectangles

  use dylan;

  use graphics,

prefix: "graphics$",

exclude: {skew-line};

end module rectangles;

define module dylan-gx

  use dylan, export: all;

  use graphics,

rename: {skew-line => warp-line},

      export: all;

end module dylan-gx;

The modules created by these module declarations would have access to 
bindings with the following names:

graphics

draw-line

erase-line

invert-line
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skew-line

frame-rect

fill-rect

erase-rect

invert-rect

plus all the bindings in the Dylan module

lines

draw-line

erase-line

invert-line

skew-line

plus all the bindings in the Dylan module

rectangles

graphics$draw-line

graphics$erase-line

graphics$invert-line

graphics$frame-rect

graphics$fill-rect

graphics$erase-rect

graphics$invert-rect

plus all the bindings in the Dylan module

dylan-gx

draw-line

erase-line

invert-line

warp-line

frame-rect

fill-rect

erase-rect

invert-rect

plus all the bindings in the Dylan module

The lines and rectangles modules do not export any variables.  They are 
presumably used to provide definitions for the variables created and exported 
by the graphics modules.  The difference between the graphics module 
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and the dylan-gx module is that one variable is renamed, and the dylan-gx 
module exports the variables which it imports from the dylan module, while 
the graphics module does not.

define library [Definition] 14

Defines and names a library, describing the imports and exports of the library.

Macro Call: define library library-name
   { export-clause | use-clause } ;*
end [ library ] [ library-name ]

Arguments: library-name namebnf

use-clause use used-library { ,option }*

export-clause export { ordinary-namebnf } ,*

used-library ordinary-namebnf

option import-option |

exclude-option |

prefix-option |

rename-option |

export-option 

import-option import: all | { { module-spec } ,* }

module-spec namebnf [ => namebnf ]

exclude-option exclude: { { namebnf } ,* }

prefix-option prefix: string-literalbnf

rename-option rename: { { namebnf => namebnf } ,* }

export-option export: all | { { namebnf } ,* }

Description: define library defines a library with the given name.  It describes which 
libraries are used by the library being defined, which modules are imported 
from the used libraries, and which modules are exported by the library being 
defined.

Circular use relationships among libraries are not allowed.  The graph of the 
library-uses-library relation must be directed and acyclic.
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Like other definitions, library definitions are only allowed at top level.  Like all 
constituents, library definitions are contained in a module.  The names of 
modules being imported and exported by a library definition do not refer to 
bindings, and are not affected by the environment in which the library 
definition occurs.

There is no prohibition against macros which expand into library definitions.

■ library-name is the name of the library being defined.  Note that no binding is 
created for this name.  The namespaces of libraries, modules, and bindings 
are distinct.  The library name is scoped along with the other library names 
in the program.

■ An export-clause specifies modules that are to be exported from the library 
being defined.  Each name  is the name of one such module.  It is an error if 
any of the modules were imported from other libraries.   It is allowed for the 
same name to appear more than once, since this is sometimes useful for 
documentation purposes.

■ Each use-clause describes a set of modules to be imported from another 
library.  There may be multiple use clauses and there may even be multiple 
use clauses importing from the same library.  If there are multiple use 
clauses importing from the same library, the modules imported are the sum 
of the modules imported by each use clause.  Because of renaming, it is 
possible for the same module to imported multiple times under different 
names.  This is not an error.
Within a use clause, the used-library is the name of the library being used.    
The mechanism by which this name is associated with another library is 
implementation defined.
The options control which modules are to be imported from that library, 
whether and how they should be renamed, and whether they should be 
rexported from the library being defined.   Each of these options applies 
within the scope of the particular use clause, and does not affect the 
behavior of other use clauses (even if the other use clauses indicate the same 
library).  The various options  may each appear no more than once in a 
single use clause.  They may appear in any order.

 

n An import-option describes which modules should be imported.  It can be 
the name all, or a series of comma-delimited module-specs enclosed in 
curly braces.  The default is all, indicating that all modules should be 
imported.  If a series of module-specs is specified, only the indicated 
modules are imported.
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n A module-spec is a name, or two names separated by an arrow.  In the first 
form, the module has the same name in the library being used and the 
library being defined.  In the second form the module is renamed as it is 
imported.  The name preceding the arrow is the name of the module in 
the library being used, and the name following the arrow is the name of 
the module in the library being defined.

 

n  An exclude-option indicates modules which should not be imported from 
the library being used.  The default is the empty set.  This option may 
only specify a non-empty set if the import option is all.

 

n A prefix-option indicates a prefix to be given to all module names as they 
are imported.  This option can be overriden for individual modules by 
supplying a renaming in the rename option or import option.  The default 
prefix option is the empty string.

 

n A rename-option indicates how individual modules should be renamed as 
they are imported.  It is a comma-delimited series of entries surrounded 
by curly braces.  Each entry is a pair of names separated by an arrow.  The 
name preceding the arrow is the name of the module in the library being 
used, and the name following the arrow is the name of the module in the 
library being defined.  The default for this option is the empty set.

 

n An export-option indicates which imported modules should be rexported 
from the library being defined.  It can be the name all, or a series of 
comma-delimited names enclosed in curly braces.  Each name is the name 
of the module in the library being defined as well as the name under 
which it will be exported.  (There is no option to rename on export)  Each 
module indicated must have been imported by this use clause.  It is 
allowed for the same name  to appear more than once, as this is 
sometimes useful for documentation purposes.  all indicates that all the 
modules imported by this use clause should be exported.  The default 
value for this option is the empty set.

define inert domain [Definition] 14

Restricts the ways in which a generic function and set of types can be extended, 
thereby enabling additional error checking and compiler optimization.

Macro Call: define inert domain generic-function  ( { type } ,* )
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Arguments: generic-function
variable-namebnf

type expressionbnf

Description: define inert domain seals the specified generic-function over the domain 
indicated by the types.  For a complete description of the rules governing 
define inert domain and the implications of a define inert domain 
definition, see “Define Inert Domain” on page 133.

■ generic-function is the name of a module binding containing an explicitly 
defined generic function.

■ Each type is an expression, the value of which must be a type. The number of 
types  must be the same as the number of required arguments accepted by 
generic-function.

define macro [Special Definition] 14

Defines a constant module binding containing a macro.

Macro Call: define macro macro-definition

Arguments: macro-definition
macro-definitionbnf

Description: See Chapter 10, “Macros,” for a complete description of the macro system.

Note that define macro is not a defining macro but a special definition.  It is 
not named by a binding, and so it cannot being excluded or renamed using 
module operations.

Local Declarations 14

Local declarations are used to create bindings or install handlers that are active 
for the remainder of the innermost body containing the declaration. Bindings 
created by local declarations can be referenced only in the remaining program 
text of the body. Handlers installed are active while the execution of the 
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remainder of the body is active, which includes the time during which any 
functions called from the remainder of the body are active.

let [Local Declaration] 14

Creates and initializes new local bindings within the smallest enclosing implicit 
body.  

Macro Call: let variables = init ;

Arguments: variables variablebnf | ( variable-listbnf )

init expressionbnf

Description: let creates local bindings for the variables, and initializes them to the values 
returned by init.  The bindings are visible for the remainder of the smallest 
enclosing implicit body.

The first value returned by the init is bound to the first variable, the second 
value to the second variable, etc.  The last variable may be preceded by #rest, in 
which case it is bound to a sequence containing all the remaining values.

Each variable is a variable-name or a variable-name followed by a specializer.

Table 14-2 Local Declarations 

Macro Description Page

let Creates and initializes new local bindings 
within the smallest enclosing implicit 
body.

378

local Creates new local bindings within the 
smallest enclosing implicit body and 
initializes them to local methods which 
can be self-recursive and 
mutually-recursive.

379

let handler Establishes a condition handler for the 
duration of the execution of smallest 
enclosing implicit body.

380
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If more than one binding is defined, the variables are enclosed in parentheses 
and separated by commas.

let start = 0;

let (whole-part, remainder) = truncate(amount);

let (first-value, #rest rest-values) = get-inital-values();

Local variables may be specialized.  This ensures that their value will always be 
of a given type.  An attempt to initialize or assign the variable to a value not of 
that type will signal an error of type <type-error>.

let elapsed-time :: <integer> = 0;

let the-front-window :: <window> = front-window();

let(whole-part :: <integer>, remainder :: <real>) = 

truncate(amount);

local [Local Declaration] 14

Creates new local bindings within the smallest enclosing implicit body and 
initializes them to local methods which can be self-recursive and 
mutually-recursive.

Macro Call: local { [ method ] name parameter-list  [ body ]  end [ method ] [ name ] } ,+

Arguments: name variable-namebnf

parameter-list
parameter-listbnf

body bodybnf

Description: local is creates local methods which may be mutually recursive and 
self-recursive.

Each name creates a new local binding.  The binding is initialized to a new 
method specified by the parameter-list and body.  In addition to being visible for 
the remainder of the smallest enclosing implicit body, the bindings created for 
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the names are visible to the parameter-lists and bodies of all the methods created 
by the local declaration.

The parameter-list is a standard method parameter list.   A complete description 
of parameter lists is given in “Parameter Lists” on page 82.

The body is an implicit body.

let handler [Local Declaration] 14

Establishes a condition handler for the duration of the execution of smallest 
enclosing implicit body.

Macro Call: let handler condition = handler

Arguments: condition type | ( type  { ,option  }*)

type expressionbnf

option test-option  | init-option

test-option test: expressionbnf

init-option init-arguments: expressionbnf

handler expressionbnf

Description: let handler establishes a new condition handler which is in effect for the 
duration of the execution of the remainder of the smallest enclosing implicit 
body.  Unlike the local declarations let and local, let handler does not 
create any bindings.

■ The condition describes the conditions for which the handler is applicable.

 

n The type is the type of the applicable conditions.  The handler will be 
applicable to conditions that are general instances of type.

 

n The test-option  is a function which is called to further test the applicability 
of the handler.  When a condition of type type is signaled, the test function 
will be called with that condition as an argument.  If the test returns true, 
the handler is considered applicable to the condition.  If the test returns 
false, the handler is considered to be inapplicable to the condition.  The 
default value of this option is a function that always returns true.  There 
can be at most one test-option.
An example use for this feature is a restart handler for restarting only 
from a particular condition object, for example restarting from an 
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unbound-slot error by setting the slot and retrying the invocation of the 
accessor.  The <set-and-continue> restart condition will have the 
signaled <unbound-slot> condition in a slot, and the handler’s test will 
check for it.  (These class names are invented for this example and are not 
part of the specification.) 

 

n The init-option is a sequence of alternating keywords and objects which 
can be used as initialization arguments to construct a condition to which 
the handler is applicable. It defaults to an empty sequence.  For example, 
if the handler is a restart handler, a program could use the initialization 
arguments to construct a restart.  (The program would retrieve the 
keyword/value pairs by calling do-handler.) There can be at most one 
init-option.

■ The handler is function called to handle a condition that matches type and 
passes test-option.  The function should accept two arguments.  The first 
argument will be the condition being signaled, and the second argument 
will be a next-handler function.  The handler handles the condition by 
taking a non-local exit, returning values according to the condition’s 
recovery protocol, or tail-recursively calling signal of a restart.  The 
function can decline to handle the condition by tail-recursively calling the 
next-handler function with no arguments. 

test-option and handler  are distinct so that handler applicability can be tested 
without actually handling (which might take a non-local exit).  One use for this 
is constructing a list of available restart handlers.

There is no “condition wall,” i.e., when executing handler  the set of available 
handlers is not reset to the handlers that were in effect when the let handler 
was entered.

 Implementations are encouraged to implement let handler in a way that 
optimizes establishing a handler for both speed and space, even if that 
increases the cost of signaling.  The assumption is that most of the time a 
handler will never be used, because the exception it is looking for will never 
occur.

type, handler, test-option, and init-option are executed before execution of the rest 
of the enclosing body begins.
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Statements 14

Statements are used to implement a variety of program constructs.

Many statements include an optional implicit body, which may contain one or 
more constintuents separated by semicolons.  When an implicit body is 
executed, the expressions in the implicit body are executed in order (left to 
right).  The values of the implicit body are the values of the last expression. If 
the optional implicit body is not present or contains no expressions, the return 
value is #f.

Table 14-3 Statements 

Macro Description Page

if Executes an implicit body if the value of a 
test is true or an alternate if the test is 
false.

383

unless Executes an implicit body unless the 
value of a test is true.

385

case Executes a number of tests until one is 
true, and then executes an implicit body 
associated with the true test.

385

select Compares a target object to a series of 
potential matches, and executes an 
implicit body associated with the first 
match found.

386

while Repeatedly executes a body until a test 
expression is false.

388

until Repeatedly executes a body until a test 
expression is true.

388

for Performs general iteration over a body, 
updating bindings and performing end 
tests on each iteration.

389
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Conditionals 14

The following statements are used to perform conditional execution.

if [Statement] 14

Executes an implicit body if the value of a test is true or an alternate if the test 
is false.

Macro Call: if ( test ) [consequent ]
 { elseif ( elseif-test  ) [elseif-consequent ] }*
 [ else [alternate  ] ]
end [ if ]

Arguments: test expressionbnf

consequent bodybnf

elseif-test expressionbnf

elseif-consequent
bodybnf

alternate bodybnf

Values: Zero or more instances of <object>.

Description: if executes one or more expressions, executing and returning the values of a 
body following the first test which returns true.

test is the first expression to be executed.  If its value is true, if executes and 
returns the values of the consequent.  If the value of test is false, if proceeds 
with the optional elseif-tests and alternate.

begin Executes expressions in a body, in order. 392

block Executes a body with several options for 
non-standard flow of control.

392

method Creates and returns a method. 396

Table 14-3 Statements (continued)

Macro Description Page
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First the elseif clauses are tried in order.  The first elseif-test is executed.  If its 
value is true, the corresponding elseif-consequent is executed and its values are 
returned as the value of the if statement.  If its value is false, the next elseif-test 
is tried.  This continues until a true elseif-test is found, or until there are no more 
elseif clauses.

If the test and all the elseif-tests are false, the alternate is executed and its values 
are returned as the value of the if statement.  If there is no alternate, the if 
statement returns #f.

if ( x < 0 )

  - x;

end if;

if ( heads?(flip(coin)) )

  start(black);

else

  start(white);

end if

if (player1.money <= 0)

  end-game(player1)

elseif (player2.money <= 0)

  end-game(player2)

else

  move(player1);

  move(player2);

end if

if ( camel.humps = 1 )

  "dromedary"

elseif ( camel.humps = 2 )

  "bactrian"

else

  "not a camel"

end if;
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unless [Statement] 14

Executes an implicit body unless the value of a test is true.

Macro Call: unless ( test  )
   [  body  ]
end [ unless ]

Arguments: test expressionbnf

body bodybnf

Values: Zero or more instances of <object>.

Description: unless executes test.  If the value of test is false, then the body is executed and 
its values are returned by unless.  If the value of test is true, the body is not 
executed and unless returns #f.

If there are no expressions in the body, then #f is returned.

unless(detect-gas? (nose))

    light(match)

end unless

case              [Statement] 14

Executes a number of tests until one is true, and then executes an implicit body 
associated with the true test.

Macro Call: case
 { test  => consequent } *
 [ otherwise [ => ] alternate  ]
end [ case ]

Arguments: test expressionbnf

consequent [ constituentsbnf ] ;

alternate [ constituentsbnf ] ;

Values: Zero or more instances of <object>.
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Description: case executes the test in order, until it reaches a test which returns true.  When 
it reaches a test which returns true, it executes the corresponding consequent 
and returns its values. Subsequent tests are not executed. If the corresponding 
consequent is empty, the first value of the successful test is returned.

As a special case, the name otherwise may appear as a test.  This test always 
succeeds if there is no preceding successful test.

If no test is true, then case returns #f.

case

   player1.money <= 0

     => end-game(player1);

   player2.money <= 0

     => end-game(player2);

   otherwise

     => move(player1);

        move(player2);

end case;

select [Statement] 14

Compares a target object to a series of potential matches, and executes an 
implicit body associated with the first match found.

Macro Call: select ( target  [ by test  ] )
 { matches  => consequent }*
 [ otherwise [ => ] alternate ] 
end [ select ]

Arguments: target expressionbnf

test expressionbnf

matches { expressionbnf } ,
+ | ( { expressionbnf } ,

+ )

consequent [ constituentsbnf ] ;

alternate [ constituentsbnf ] ;

Values: Zero or more instances of <object>.
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Description: select generates a target object and then compares it to a series of potential 
matches, in order.  If it finds a match, it executes the corresponding consequent 
and returns the values of the consequent.  If no match is found, an error is 
signaled.

The target is executed to produce the match object.

The test, if supplied, is a function used to compare the target object to the 
potential matches.  The default test is ==.

One at a time, each match is executed and its value compared to target, in order.  
If a match is found, the corresponding consequent is executed and its values are 
returned.  If the corresponding consequent is empty, #f is returned.

Once a match is found, subsequent matches  and the corresponding bodies are 
not executed.

As a special case, the name otherwise may appear instead of a matches.  This 
will be considered a match if no other match is found.

If there is no matching clause, an error is signaled.  Because an otherwise 
clause matches when no other clause matches, a select form that includes an 
otherwise clause will never signal an error for failure to match.

Since testing stops when the first match is found, it is irrelevant whether the 
test function would also have returned true if called on later matches of the 
same clause or on matches of later clauses.

select ( career-choice(student) )

   art:, music:, drama:

     => "Don’t quit your day job";

   literature:, history:, linguistics:

     => "That really is fascinating";

   science:, math:, engineering:

     => "Say, can you fix my VCR?";

   otherwise => "I wish you luck";

end select;

select ( my-object by instance? )

  <window>, <view>, <rectangle> => "a graphical object";

  <number>, <string>, <list> => "a computational object";

  otherwise => "I don’t know";

end select
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Iteration Constructs 14

while [Statement] 14

Repeatedly executes a body until a test expression is false.

Macro Call: while ( test  )
    [ body  ]
end [ while ]
⇒   #f

Arguments: test expressionbnf

body bodybnf

Values: #f

Description: while loops over body until test returns false.

Each pass through the loop begins by executing test.  If test returns a true value, 
the expressions in the body  are executed and the looping continues.  If test 
returns false, the loop terminates and while returns #f.

until   ( test  ) [Statement] 14

Repeatedly executes a body until a test expression is true.

Macro Call: until ( test )
    [ body  ]
end [until]  
⇒   #f

Arguments: test expressionbnf

body bodybnf

Values: #f

Description: until loops over body until test returns true.
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Each pass through the loop begins by executing test.  If test returns false, the 
expressions in the body  are executed and the looping continues.  If test returns 
true, the loop terminates and until returns #f.

for [Statement] 14

Performs general iteration over a body, updating bindings and performing end 
tests on each iteration.

Macro Call: for ( { for-clause } ,*  |
     { { for-clause  ,}* end-clause  })
 [ loop-body  ]
 [ finally [ result-body  ] ]
end [ for ]

Arguments: for-clause explicit-step-clause  |

collection-clause  |

numeric-clause 

end-test expressionbnf

loop-body bodybnf

result-body bodybnf

explicit-step-clause
variablebnf = init-value  then next-value

collection-clause
variablebnf in collection

numeric-clause
variablebnf from start
                [ { to | above  |below } bound  ]
                [ by increment  ]

end-clause { until: | while: } end-test

init-value expressionbnf

next-value expressionbnf

collection expressionbnf

start expressionbnf

bound expressionbnf
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increment expressionbnf

Values: Zero or more instances of <object>.

Description: for iterates over loop-body, creating and updating iteration bindings on each 
iteration according to the for-clauses.  Iteration ends when one of the for-clauses 
is exhausted, or when the optional end-test is satisfied.

Each for-clause controls one iteration binding.  The optional end-test does not 
control any iteration bindings.

There are three kinds of for-clauses: explicit-step-clauses, collection-clauses, and 
numeric-clauses:  An explicit-step-clause creates bindings for the results of 
executing an expression.  A collection-clause creates bindings for successive 
elements of a collection.  A numeric-clause creates bindings for a series of 
numbers.

Execution of a for statement proceeds through the following steps:

1. Execute the expressions that are executed just once, in left to right order as 
they appear in the for statement.  These expressions include the types of all 
the bindings, and the expressions init-value, collection, start, bound, and 
increment.   If the value of collection is not a collection, an error is signaled. 
The default value for increment is 1.

2. Create the iteration bindings of explicit step and numeric clauses.

 

n For each explicit step clause, create the binding for the value of init-value.  
If the binding is typed and the value is not of the specified type, signal an 
error. 

 

n For each numeric clause, create the binding for the value of start.  If the 
binding is typed and the value is not of the specified type, signal an error. 

3. Check numeric and collection clauses for exhaustion.  If a clause is 
exhausted, go to step 9.

 

n A collection clause is exhausted if its collection has no next element.

 

n A numeric clause is exhausted if a bound is supplied and the value of the 
clause is no longer in bounds.  If above is specified, the clause will be in 
bounds as long as the value is greater than the bounds.  If below is 
specified, the clause will be in bounds as long as the value is less than the 
bounds.  If to is specified with a positive or zero increment, the clause will 
be in bounds as long as it is less than or equal to the  bounds.  If to is 
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specified with a negative increment, the clause will be in bounds as long as 
it is greater than or equal to the bounds.

4. For each collection clause create the iteration binding for the next element of 
the collection for that clause.  Fresh bindings are created each time through 
the loop (i.e., the binding is not assigned the new value).  If the binding is 
typed and the value is not of the specified type, signal an error. 

5. If end-test is supplied, execute it.  If the value of end-test is false and the 
symbol is while:, go to step 9.  If the value of end-test is true and the 
symbol is until:, go to step 9.

6. Execute the expressions in the body in order.  The expressions in the body are 
used to produce side-effects.

7. Obtain the next values for explicit step and numeric clauses.  Values are 
obtained in left to right order, in the environment produced by step 6.

 

n For each explicit step clause, execute next-value.

 

n For each numeric clause, add the increment to the current value of the 
binding, using +.

8. Create the iteration bindings of explicit step and numeric clauses for the 
values obtained in step 7.  For each clause, if a binding type is supplied and 
the next value for that clause is not of the specified type, signal an error.    
Fresh bindings are created each time through the loop (i.e., the binding is not 
assigned the new value).  After the bindings have been created, go to step 3.

9. Execute the expressions in the result-body  in order.  Bindings created in step 
2 and 8  are visible during the execution of result-body, but bindings created 
in step 4 ( the iteration bindings of collection clauses) are not visible during 
the execution of result-body.   The values of the last expression in the 
result-body  are returned as the values of the for statement.  If there are no 
expressions in the result-body, for returns #f.

for ( thing = first-thing then next(thing),

      until: done?(thing) )

  do-some(thing)

end;

for (j :: <integer> from 0 to height)

  for (i :: <integer> from 0 to width)

   erase(i,j);
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   plot (i,j);

  end for;

end for;

for (city in olympic-cities,

     year from start-year by 4)

  schedule-olympic-game(city, year)

  finally: notify(press);

           sell(tickets);

end;

for (i from 0 below 100,

     zombies from 0 below 100,

     normals from 100 above 0 by -1)

   population[i] := zombies + normals

end;

begin [Statement] 14

Executes expressions in a body, in order.

Macro Call: begin [ body  ] end

Arguments: body bodybnf

Values: Zero or more instances of <object>.

Description: Begin executes the expressions in a body, in order.  The values of the last 
expression are returned.  If there are no expressions in the body, #f is returned.

block [Statement] 14

Executes a body with several options for non-standard flow of control. 

Macro Call: block ( [ exit-variable ] )
 [ block-body ]
 [ afterwards [ afterwards-clause ] ]
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 [ cleanup [ cleanup-clause  ] ]
 { exception exception-clause  }*
end [ block ]

Arguments: exit-variable variable-namebnf

block-body bodybnf

afterwards-clause
bodybnf

cleanup-clause bodybnf

exception-clause
( [ name  :: ] type  { ,exception-options  }*)
    [ bodybnf ]

name variable-namebnf

type expressionbnf

exception-options
{ test: expressionbnf } | { init-arguments: expressionbnf }

Values: Zero or more instances of <object>.

Description: block executes the expressions in the block-body in order, and then the executes 
the optional afterwards-clause and cleanup-clause.  Unless there is a non-local exit, 
block returns the values of the block-body, or #f if there is no block-body.

If exit-variable is provided, it is bound to an exit procedure (an object of type 
<function>) which is valid during the execution of the block body and the 
clauses.   At any point in time before the last clause returns, the exit procedure 
can be called.  Calling the exit procedure has the effect of immediately 
terminating the execution of the block, and returning as values the arguments 
to the exit procedure.

The body of the afterwards-clause, if provided, is executed after the block-body.  
The values produced by the afterwards-clause are ignored.

The body of the cleanup-clause, if provided, is executed after the block-body and 
afterwards-clause.   Its values are also ignored.  The cleanup clause differs from 
the afterwards clause in that its body is guaranteed to be executed, even if the 
execution of the block is interrupted by a non-local exit.  There is no such 
guarantee for the afterwards clauses.
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For example, the following code fragment ensures that files are closed even in 
the case of an error causing a non-local exit from the block body:

block (return)

  open-files();

  if (something-wrong)

    return("didn't work");

  end if;

  compute-with-files()

cleanup

  close-files();

end block

The exception-clauses, if supplied, install exception handlers during the 
execution of the block-body, afterwards-clause, and cleanup-clause.  If one of these 
handlers is invoked, it never declines but immediately takes a non-local exit to 
the beginning of the block, executes the expressions in its body and returns the 
values of the last expression or #f if the body is empty.  Note that when the 
expressions in an exception body are executed, all handlers established by the 
block are no longer active.  Note also that the cleanup clause of the block will 
be executed before the expressions of the handler body are executed.

The type and exception-options are as for let handler.  If present, name is 
bound to the condition during the execution of the handler’s body.

The exception clauses are checked in the order in which they appear.  That is, 
the first handler will take precedence over the second, the second over the 
third, etc.

The following is a trivial use of an exception clause.

block (return)

  open-files();

  compute-with-files()

exception (<error>) 

  "didn't work")

cleanup

  close-files();

end block
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Dynamic Extent of Block Features 14

A block installs features which are active for different portions of the execution 
of the block.

■ During the execution of the block body and the afterwards clause the exit 
procedure, exception clauses, and cleanup clauses are active.

■ During the execution of the cleanup clause, the exit procedure and exception 
clauses are active.

■ During the execution of a handler installed by an exception clause, the exit 
procedure is active.

Intervening Cleanup Clauses 14

When an exit procedure is called, it initiates a non-local exit out of its 
establishing block.  Before the non-local exit can complete, however, the 
cleanup clauses of intervening blocks (blocks that have been entered, but not 
exited, since the establishing block was entered) must be executed, beginning 
with the most recently entered intervening block.   Once the cleanup clauses of 
an intervening block have been executed, it is an error to invoke the exit 
procedure established by that block.  The cleanup clauses of the establishing 
block are executed last.  At that point, further invocation of the exit procedure 
becomes invalid, and the establishing block returns with the values that were 
passed to the exit procedure.

Note that a block statement may also be exited due to the execution of a 
handler clause.  Before the exception clause is executed, intervening cleanup 
clauses are executed as described above (including any clause for the 
establishing block.)  The exit procedure may be invoked during execution of 
exception clauses, in which case the argument values are immediately returned 
from the block (the cleanup clause already having been executed).

During the process of executing the cleanup clauses of the intervening blocks, 
any valid exit procedure may be invoked and may interrupt the current 
non-local exit.

All exception clauses are executed in the same dynamic environment.  None of 
the handlers established in the block are visible during the execution of one of 
the handlers.  This can be thought of as parallel installation of the handlers.
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Restrictions on the use of exit procedures 14

The exit procedure is a first-class object.  Specifically, it can be passed as an 
argument to functions, stored in data structures, etc.  Its use is not restricted to 
the lexical body of the block in which it was established.  However, invocation 
of the exit procedure is valid only during the execution of the establishing 
block.  It is an error to invoke an exit procedure after its establishing block has 
returned, or after execution of the establishing block has been terminated by a 
non-local exit.

In the following example, the block establishes an exit procedure in the 
binding bar.  The block returns a method containing a call to bar, and the  
method is stored in the binding foo.  Calling foo is an error because it is no 
longer valid to invoke bar after its establishing block has returned.

define constant foo =

  block (bar)

     method (n) bar(n) end;

  end block;

foo(5)

  {error or other undefined consequences}

method [Statement] 14

Creates and returns a method.

Macro Call: method parameter-list  [ body ] end [ method ]

Arguments: parameter-list parameter-listbnf

body bodybnf

Values:   An instance of <method>.

Description: method creates and returns a method specified by the parameter-list and body.  
For a complete description of methods, see “Methods” on page 78.
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Special Operators 14

Special operators provide syntax for assignment and for conditional execution.

Assignment 14

 := [Special Operator] 14

Stores a new value in a location.

Operator Call: place := new-value

Arguments: place operandbnf

new-value operandbnf

Values: new-value, an instance of <object>.

Description: := stores new-value in place and returns new-value.

place may be a variable, a getter function or macro with a corresponding setter, 
a slot access, or an element reference.

new-value may be any operand.  It is executed, and its value is stored in place.

Table 14-4 Special Operators 

Operator Description Page

:= Stores a new value in a location. 397

| Returns the value of the first of two 
operands which is true.Returns the value 
of the first of two operands which is true.

399

& Executes a second operand and returns its 
values if the value of the first operand is 
true.

400
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In all cases, new-value must be an appropriate type for place or an error is 
signaled.

The new-value of an assignment statement is executed first, followed by the 
place (assuming the place requires any execution, which will only be true if it is 
not a binding name).

Assignment to a binding 14

If place is a binding name, then new-value is stored in the binding.  It is an error 
if there is no binding corresponding to place.  (:= cannot be used to create 
bindings, only to change their values.)  An error is also signaled if place is a 
binding specialized to a type and the new-value is not of that type.

define variable *number* = 10;

*number*

 ⇒   10

*number* := *number* + 10;

 ⇒   20

*number*

 ⇒   20

Assignment to a function or function macro 14

If place has the syntax of a function call, then := will invoke the corresponding 
setter function. Given a binding named fun, the corresponding setter is the 
binding named fun-setter in the current environment.

:= maps place to place-setter without regard for whether place is a function 
or a macro.  It does not expand a macro call on the left-hand side before 
determining the setter.

With the exception of the order of execution and a guaranteed return value, the 
following three expressions are equivalent:

*top-view*.subviews := generate-subviews()

subviews(*top-view*) := generate-subviews()

subviews-setter(generate-subviews(), *top-view*)

(The differences are as follows: the execution time of subviews-setter is 
undefined in the first two expressions but defined in the last; the first two 
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expressions will return the value of the call to generate-subviews while the 
last will return the value of the call to subviews-setter.)

name(arg1,…argn ) := new-value

behaves exactly the same as

begin

  let temp = new-value;
  name-setter(temp, arg1,…argn );

  temp
end

This is true regardless of whether name and name-setter are functions or 
macros.  Here temp stands for a variable with a unique name.  If name-setter 
is a macro, it  is responsible for the order of executation of arg1,…argn.

The same considerations apply to arg.name := new-value.

Assignment to element references 14

Just as [] can be used as syntax for element and aref, [] and := can be used 
as syntax for element-setter and aref-setter. For example, the 
following three expressions are equivalent:

foo[2] := "quux"

element (foo, 2) := "quux"

element-setter ("quux", foo, 2).

Conditional Execution 14

| [Special Operator] 14

Returns the value of the first of two operands which is true.

Macro Call: one  | another

Arguments: one operandbnf

another operandbnf
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Values: Zero or more instances of <object>.

Description: | (logical or) executes one.  If the first value of one is true, that value is 
returned.  Otherwise another is executed and its values are returned.

& [Special Operator] 14

Executes a second operand and returns its values if the value of the first 
operand is true.

Macro Call: one & another  ⇒   values

Arguments: one operandbnf

another operandbnf

Values: Zero or more instances of <object>.

Description: & (logical and) executes one.  If the first value returned by one is false, #f is 
returned and another is not executed.  Otherwise, another is executed and its 
values are returned.
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A P P E N D I X  A

 

BNF A

 

General Notes A

 

Dylan syntax can be parsed with an LALR(1) grammar.

This appendix uses some special notation to make the presentation of the 
grammar more readable. 

 

■

 

The 

 

opt

 

 suffix means that the preceding item is optional. 

 

■

 

A trailing ellipsis (...) is used in two different ways to signal possible 
repetition. 

 

n

 

If there is only one item on the line preceding the ellipsis, the item may 
appear one or more times. 

 

n

 

If more than one item precedes the ellipsis, the last of these items is 
designated a separator; the rest may appear one or more times, with the 
separator appearing after each occurrence but the last. (When only one 
item appears, the separator does not appear.)

 

■

 

Identifiers for grammar rules are written with uppercase letters when the 
identifier is used in the phrase grammar but defined in the lexical grammar. 

 

■

 

The grammar does not use distinct identifiers for grammar rules that differ 
only in alphabetic case.

 

Lexical Notes A

 

In the lexical grammar, the various elements that come together to form a 
single token on the right-hand sides of rules must 

 

not

 

 be separated by 
white-space, so that the end result will be a single token. This is in contrast to 
the phrase grammar, where each element is already a complete token or a 
series of complete tokens.

Arbitrary white-space is permitted between tokens, but it is required only as 
necessary to separate tokens that might otherwise blend together.

Figure A-0
Listing A-0
Table A-0
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Lexical Grammar

 

Case is not significant except within character and string literals. The 
grammars do not reflect this, using one case or the other, but it is still true.

 

Lexical Grammar A

 

Comments A

 

comment:

 

//

 

  …

 

the rest of the line

 

/*

 

  …

 

everything even across lines

 

…  

 

*/

 

Tokens A

 

TOKEN

 

:

 

NAME
SYMBOL
NUMBER
CHARACTER

 

-

 

LITERAL
STRING
UNARY

 

-

 

OPERATOR
BINARY

 

-

 

OPERATOR

 

punctuation
#-word

punctuation:

 

one of 

 

( ) , . ; [ ] { } :: - = == =>

 

one of 

 

#( #[ ## ? ?? ?= ...

 

#-word:

 

one of

 

#t #f #next #rest #key #all-keys #include

 

Reserved Words A

 

reserved-word:
core-word
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BEGIN

 

-

 

WORD
FUNCTION

 

-

 

WORD
DEFINE

 

-

 

BODY

 

-

 

WORD
DEFINE

 

-

 

LIST

 

-

 

WORD

 

core-word:

 

one of

 

define end handler let local macro otherwise

 

The following reserved words are exported by the Dylan module:

 

BEGIN

 

-

 

WORD

 

:

 

one of

 

begin block case for if method

 

one of

 

select unless until while

 

FUNCTION

 

-

 

WORD

 

:
(none)

 

DEFINE

 

-

 

BODY

 

-

 

WORD

 

:

 

one of

 

class library method module

 

DEFINE

 

-

 

LIST

 

-

 

WORD

 

:

 

one of

 

constant variable

 

Names, Symbols and Keywords A

 

NAME

 

:

 

word

 

 

 

\

 

 word

 

 

 

operator-name

 

UNRESERVED

 

-

 

NAME

 

:

 

any

 

 

 

word 

 

 

 

that is not also a 

 

reserved-word

 

\

 

 word

 

 

 

operator-name

 

ORDINARY

 

-

 

NAME

 

:

 

UNRESERVED

 

-

 

NAME
DEFINE

 

-

 

BODY

 

-

 

WORD
DEFINE

 

-

 

LIST

 

-

 

WORD

CONSTRAINED

 

-

 

NAME

 

:

 

NAME

 

 

 

 : 

 

word

 

 

 

NAME

 

 

 

 : 

 

BINARY

 

-

 

OPERATOR

 

 

 

: 

 

word
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operator-name:

 

\

 

 unary-function-operator

 

\

 

 binary-function-operator

 

SYMBOL

 

:

 

word

 

:

 

#

 

 

 

STRING

 

word:
leading-alphabetic
leading-numeric  alphabetic-character  leading-alphabetic
leading-graphic  leading-alphabetic

leading-alphabetic:
alphabetic-character
leading-alphabetic  any-character

leading-numeric:
numeric-character
leading-numeric  any-character

leading-graphic:
graphic-character
leading-graphic  any-character

any-character:
alphabetic-character
numeric-character
graphic-character
special-character

alphabetic-character:

 

one of  

 

a b c d e f g h i j k l m n o p q r s t u v w x y z

 

numeric-character:

 

one of

 

0 1 2 3 4 5 6 7 8 9

 

graphic-character:

 

one of

 

! & * < > | ^ $ % @ _

 

special-character:

 

one of

 

- + ~ ? / =
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Operators A

 

UNARY

 

-

 

OPERATOR

 

:

 

unary-function-operator

 

BINARY

 

-

 

OPERATOR

 

:
binary-function-operator
special-operator

unary-function-operator:
one of - ~

binary-function-operator:
one of + - * / ^ = == ~= ~== < <= > >=

special-operator:
one of & | :=

Character and String Literals A

CHARACTER-LITERAL:
'  character  '

character:
any printing character (including space) except for  '  or  \
\ escape-character
\ '

STRING:
"  more-string

more-string:
string-character  more-string
"

string-character:
any printing character (including space) except for  "  or  \
\  escape-character
\  "

escape-character:
one of \ a b e f n r t 0
<  hex-digits   >
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Numbers A

NUMBER:
integer
ratio
floating-point

integer:
binary-integer
octal-integer
signopt  decimal-integer
hex-integer

binary-integer:
#b  binary-digit
binary-integer  binary-digit

octal-integer:
#o  octal-digit
octal-integer  octal-digit

decimal-integer:
decimal-digit
decimal-integer  decimal-digit

hex-integer:
#x  hex-digit
hex-integer  hex-digit

hex-digits:
hex-digit  …

binary-digit:
one of 0 1

octal-digit:
one of 0 1 2 3 4 5 6 7

decimal-digit:
one of 0 1 2 3 4 5 6 7 8 9

hex-digit:
one of 0 1 2 3 4 5 6 7 8 9 A B C D E F
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ratio:
signopt  decimal-integer  /  decimal-integer

floating-point:
signopt  decimal-integeropt  .  decimal-integer  exponentopt
signopt  decimal-integer  .  decimal-integeropt  exponentopt
signopt  decimal-integer  exponent

exponent:
E  signopt  decimal-integer

sign:
one of + -

Phrase Grammar A

Program Structure A

source-record:
bodyopt

body:
constituents  ;opt

constituents:
constituent  ; …

constituent:
definition
local-declaration
expression

macro:
definition-macro-call
statement
function-macro-call
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Property Lists A

comma-property-list:
, property-list

property-list:
property  , …

property:
SYMBOL value

value:
basic-fragment

Fragments A

body-fragment:
non-statement-body-fragment
statement   non-statement-body-fragmentopt

list-fragment:
non-statement-list-fragment
statement   non-statement-list-fragmentopt

basic-fragment:
non-statement-basic-fragment
statement   non-statement-basic-fragmentopt

non-statement-body-fragment:
definition   semicolon-fragmentopt
local-declaration   semicolon-fragmentopt
simple-fragment   body-fragmentopt
,  body-fragmentopt
;  body-fragmentopt

semicolon-fragment:
; body-fragmentopt

non-statement-list-fragment:
simple-fragment   list-fragmentopt
, list-fragmentopt
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non-statement-basic-fragment:
simple-fragment   basic-fragmentopt

simple-fragment:
variable-name
constant-fragment
BINARY-OPERATOR
UNARY-OPERATOR
bracketed-fragment
function-macro-call
#-word
one of . :: => ? ?? ?= ... ## otherwise

bracketed-fragment:
(  body-fragmentopt  )
[  body-fragmentopt  ]
{  body-fragmentopt  }

constant-fragment:
NUMBER
CHARACTER-LITERAL
STRING 
SYMBOL
#(  constants  .  constant  )
#(  constantsopt  )
#[  constantsopt  ]

Definitions A

definition:
definition-macro-call
define  macro  macro-definition

definition-macro-call:
define  modifiersopt DEFINE-BODY-WORD body-fragmentopt definition-tail
define  modifiersopt DEFINE-LIST-WORD list-fragmentopt

modifier:
UNRESERVED-NAME

modifiers:
modifier …
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definition-tail:
end DEFINE-BODY-WORDopt NAMEopt

Local Declarations A

local-declaration:
let  bindings
let  handler  condition  =  handler
local  local-methods

condition:
type
(  type  comma-property-listopt  )

handler:
expression

local-methods:
methodopt  method-definition  , …

bindings:
variable  =  expression
(  variable-list  )  =  expression

variable-list:
variables
variables  ,  #rest  variable-name 
#rest  variable-name  

variables:
variable  , …

variable:
variable-name 
variable-name  ::  type

variable-name:
ORDINARY-NAME

type:
operand
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Expressions A

expressions:
expression  , …

expression:
binary-operand BINARY-OPERATOR …

binary-operand:
SYMBOL
UNARY-OPERATORopt  operand

operand:
operand  (  argumentsopt  )
operand  [  arguments  ]
operand  .  variable-name 
function-macro-call
leaf

arguments:
SYMBOLopt  expression  , …

function-macro-call:
FUNCTION-WORD  (  body-fragmentopt  )
FUNCTION-WORD  (  body-fragmentopt  ) := expression 

leaf:
literal
variable-name 
(  expression  )
statement

literal:
NUMBER
CHARACTER-LITERAL
string-literal
#t
#f
#(  constants  .  constant  )
#(  constantsopt  )
#[  constantsopt  ]

string-literal:
STRING …
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constants:
constant  , …

constant:
literal
SYMBOL

Statements A

statement:
BEGIN-WORD  body-fragmentopt  end-clause

end-clause:
end BEGIN-WORDopt

case-body:
cases  ;opt 

cases:
case-label  constituentsopt  ; …

case-label:
expressions  =>
(  expressions  )  =>
otherwise  =>opt

Methods A

method-definition:
variable-name  parameter-list  bodyopt  end  methodopt  variable-nameopt

parameter-list :
(  parametersopt  )  ;opt 
(  parametersopt  )  =>  variable  ; 
(  parametersopt )  =>  ( values-listopt  )  ;opt

parameters:
required-parameters
required-parameters  ,  next-rest-key-parameter-list
next-rest-key-parameter-list
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next-rest-key-parameter-list:
#next  variable-name 
#next  variable-name  ,  rest-key-parameter-list
rest-key-parameter-list

rest-key-parameter-list:
#rest  variable-name 
#rest  variable-name  ,  key-parameter-list
key-parameter-list

key-parameter-list:
#key  keyword-parametersopt
#key  keyword-parametersopt  ,  #all-keys
#all-keys

required-parameters:
required-parameter  , …

required-parameter:
variable
variable-name  ==  expression

keyword-parameters:
keyword-parameter  , …

keyword-parameter:
SYMBOLopt  variable  defaultopt

default:
=  expression

values-list:
variables
variables  ,  #rest  variable 
#rest  variable 

Macro Definitions A

macro-definition:
NAME  main-rule-set  auxiliary-rule-setsopt  end  macroopt NAMEopt

main-rule-set:
body-style-definition-rule ...
list-style-definition-rule ...
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statement-rule ...
function-rule ...

body-style-definition-rule :
{  define  definition-headopt   NAME patternopt  ;opt  end } => rhs

list-style-definition-rule :
{  define  definition-headopt   NAME  patternopt  }  => rhs

rhs:
{  templateopt  } ;opt

definition-head :
modifier-pattern  ...

modifier-pattern:
modifier
pattern-variable 

statement-rule:
{  NAME  patternopt  ;opt  end  }  => rhs

function-rule:
{  NAME  (  patternopt  )  }  => rhs

Patterns A

pattern:
pattern-list  ; ...

pattern-list:
pattern-sequence 
property-list-pattern
pattern-sequence  ,  pattern-list

pattern-sequence:
simple-pattern ...

simple-pattern:
NAME
=>
bracketed-pattern
binding-pattern
pattern-variable
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bracketed-pattern:
( patternopt   )
[ patternopt   ]
{ patternopt   }

binding-pattern:
pattern-variable  :: pattern-variable
pattern-variable   = pattern-variable
pattern-variable  :: pattern-variable  = pattern-variable

pattern-variable:
?  NAME 
?  CONSTRAINED-NAME
...

property-list-pattern:
#rest  pattern-variable 
#key  pattern-keywordsopt 
#rest  pattern-variable  ,  #key  pattern-keywordsopt 

pattern-keywords:
#all-keys
pattern-keyword 
pattern-keyword  , pattern-keywords

pattern-keyword:
?  NAME defaultopt
?  CONSTRAINED-NAME defaultopt
??  NAME defaultopt
??  CONSTRAINED-NAME defaultopt

Templates A

template:
template-element ...

template-element:
NAME
SYMBOL
NUMBER
CHARACTER-LITERAL
STRING
UNARY-OPERATOR
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separator
#-word
one of . :: =>
(  templateopt  )
[  templateopt  ]
{  templateopt  }
#(  templateopt  )
#[  templateopt  ]
substitution

separator:
one of ; ,
BINARY-OPERATOR

substitution:
name-prefixopt ? name-string-or-symbol name-suffixopt  
??  NAME  separatoropt   ...
...
?= NAME 

name-prefix:
STRING  ##

name-suffix:
##  STRING 

name-string-or-symbol:
NAME
STRING
SYMBOL

Auxiliary Rule Sets A

auxiliary-rule-sets:
auxiliary-rule-set ...

auxiliary-rule-set:
SYMBOL auxiliary-rules

auxiliary-rules:
auxiliary-rule ...

auxiliary-rule:
{  patternopt  }  => rhs
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Glossary

 

abstract class

 

 
A class that is not intended to have 

 

direct 
instances

 

.  The opposite of an abstract class 
is a 

 

concrete class

 

.

 

access 

 

1. (a slot) To retrieve (

 

get

 

) or replace (

 

set

 

) 
the value of the slot.    2. (a collection 
element) To retrieve or replace the collection 
element.

 

accessor 

 

A 

 

slot accessor

 

 (a 

 

getter

 

 or 

 

setter

 

). 

 

accessible 

 

(from a module) A binding that is either 

 

owned

 

 by the module or imported into the 
module from another module. 

 

ambiguous methods 

 

(for a particular function call)   Two 
methods that are both 

 

applicable

 

 for the 
function call, but neither of which is more 
specific than the other.

 

anonymous 

 

1. (~ method) Created by a 

 

method

 

 
statement, as opposed to having been 
created and named by a 

 

define method

 

 
or 

 

local

 

 definition, or having been 

 

implicitly defined

 

.  Compare with 

 

bare 
method

 

.   2. (~ class) Created by calling the 

 

make

 

 function on the class 

 

<class>

 

, as 
opposed to having been created and named 
by a 

 

define class

 

 definition.  3. (~ 
generic function) Created by calling the 

 

make

 

 function on the class 

 

<generic-function>

 

, as opposed to 
having been created and named by a 

 

define generic

 

 definition.

 

applicable 

 

1. (~ method, during a generic function call) 
Having a 

 

parameter list

 

 which matches the 
supplied arguments.    2. (~ handler, when a 
condition is signaled) Matching the 
signaled condition by type and by an 
optional test function associated with the 
handler.

 

apply

 

1. (a function to arguments)  To call the 
function with the arguments. 2. The 
function 

 

apply

 

 (see page 339).

 

argument 

 

An object that is supplied to a function in a 
function call.  In other languages, this is 
sometimes called an “actual argument” or 
“actual parameter.”

 

array 

 

An instance of <array>.

 

assign 

 

1. (a variable) To change the value of the 
variable.  2. (a slot) To set the value of the 
slot.  3. (a collection element)  To change the 
value of a collection element.

 

bare method 

 

1. A method which is not part of a generic 
function.  2. A method which is used 
directly, as though it is not part of a generic 
function.
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base type

 

(of a type): Every type has a base type.  The 
base type for a class is the class itself.  The 
base type of a singleton is the singleton  
itself.  The base type of a union is the union 
of the base types of its  component types.  
The base type of a limited type 

 

limited(

 

C

 

,

 

 …

 

)

 

 is 

 

C

 

.

 

bind 

 

(a variable) To establish a 

 

binding

 

.

 

binding 

 

An association between a name and a value.

 

body 

 

A grammatical element of a Dylan 
program, consisting of zero or more 
constituents. If any of the constituents are 
expressions, the body returns the values of 
the last expression.

 

bound 

 

(~ name) Having a 

 

binding

 

 which 
associates the namewith a value.

 

call 

 

(a function) To invoke a function on a set of 
arguments. If the function is a generic 
function, it will dispatch to an appropriate 
method. If the function is a method, it will 
cause the body of the method to be 
executed within an environment in which 
the 

 

parameter

 

s

 

 of the function are bound to 
the 

 

arguments

 

.

 

circular list 

 

A list that has no last element, because the 
tail of every pair in the list is another pair in 
the list.  Compare with 

 

improper list

 

, 

 

dotted list

 

.

 

class 

 

1. A 

 

type

 

 that specifies the structure of 

 

instance

 

 and categorizes objects.  Each 
Dylan object is a 

 

direct instance

 

 of exactly 
one class.  2. (of an object) The class of 
which the object is a 

 

direct instance

 

.

 

class hierarchy 

 

A directed acyclic graph (DAG) which 
describes the subclass/superclass 
relationships among classes.  Each node 
represents a class, the children of a node 
represent the direct subclasses of a class, 
and the parents of a node represent the 
direct superclasses of a class.

 

class precedence list 

 

(of a class) A total ordering on the class and 
its superclasses that is consistent with the 
local precedence orders for the class and 
each of its superclasses.  The class 
precedence list is used in determining 
method specificity.

 

cleanup clause 

 

A clause in a 

 

block

 

 statement that is 
guaranteed to be executed, even if the 
execution of the 

 

block

 

 statement is 
terminated by a 

 

non-local exit

 

.

 

coerce 

 

(an object to a type) To produce a new 
object of the specified type, without 
modifying the original object.  The intent is 
to produce an object that preserves the 
meaning of the original object, but is an 
instance of the specified type.

 

collection 

 

An aggregate data structure such as a list, a 
table, or an array.  A collection is an 
instance of 

 

<collection>.



 

G L O S S A R Y

 

421

collection alignment 

 

A technique of preparing two or more 
collections for an iteration over those 
collections, ensuring that elements are 
paired in a consistent way.

 

collection key 

 

(of a collection) An object that can be passed 
to random-access operations (such as 

 

element

 

 or 

 

element-setter

 

) to access 
an element of the collection.

 

concrete class 

 

A class that is intended to have direct 
instances.  The opposite of a concrete class 
is an 

 

abstract class

 

.

 

condition 

 

An object that is signaled in an exceptional 
situation, and used to determine which 

 

handlers

 

 are applicable in the situation.  
Conditions are instances of 

 

<condition>

 

.

 

congruent 

 

(two or more ~ parameter lists) Having 
compatible parameters.  The parameter lists 
of a generic function and its methods must 
be congruent. See “Parameter List 
Congruency” on page 91.

 

constant 

 

1. A 

 

constant binding

 

.  2. A 

 

literal 
constant

 

.  3. (~ binding) Read-only.  4. (~ 
slot) Not assignable.  Constant slots do not 
have setter functions.

 

constant binding

 

A binding which cannot be assigned a new 
value.

 

contents 

 

1. (of a collection) The elements of the 
collection.  2. (of an object) The values 
stored in the object’s slots.

 

copy

 

 
1. (of an object) A new object that has 
similar structure and 

 

contents

 

 as the 
original object.  A copy may be an instance 
of the same class as the original object, or it 
may be an instance of the 

 

type-for-copy

 

 of 
the object.  A copy may or may not share 
structure with the original object.  Compare 

 

fresh copy

 

, 

 

shallow copy

 

.   2. (an object) To 
create a copy of the object.

 

default method 

 

(of a generic function) The method with the 
most general parameter specializers for the 
generic function, intended for use when no 
more specific method is defined.

 

definition 

 

A syntax form that denotes a declarative 
part of a program.  Definitions are restricted 
to be top level expressions, and do not 
return values.

 

destructive 

 

(~ function) Capable of modifying its 
arguments.

 

direct instance 

 

(of a class C) An object whose class is C 
itself, rather than some subclass of C.

 

direct subclass 

 

(of a class C1) A class C2 such that C1 is a 
direct superclass of C2.

 

direct superclass 

 

(of a class C1) A class C2 that is listed as a 
superclass of C1 in the definition of C1, or 
that was passed as one of the 

 

superclass:

 

 arguments to 

 

make

 

 when C1 
was created.
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disjoint

 

(of types): Informally, two types are disjoint 
if there can be no object that is an instance 
of both types. A formal definition is given 
in “Type Disjointness” on page 49.

 

dotted list 

 

A list that has something other than the 

 

empty list

 

 as the tail of its last pair.  
Compare 

 

proper list

 

, 

 

improper list

 

.

Dylan source code file 
A file containing Dylan code in the 
standard portable file format as described 
in“Dylan Interchange Format” on page 21.

element 
(of a collection) An object that is stored in 
the collection.  It can be identified by a 
collection key.

element reference syntax 
The shorthand syntax for accessing an 
element of an array or of any other 
collection.  x[y], x[y, z]

empty list 
The list that contains no elements.  It is the 
unique instance of the class <empty-list>.

environment 
1. A set of bindings.  2. The set of bindings 
that are available to a particular part of a 
program.

equivalence class 
(for an equivalence predicate) A set of 
objects, or potential objects, that are all the 
same under the specified equivalence 
predicate and different under that predicate 
from all objects not in the equivalence class.

equivalence predicate 
A boolean function of two arguments that 
returns true if and only if the arguments are 
"the same" according to some specified 
criteria.  For a function to be used as an 
equivalence predicate, it must be reflexive, 
commutative, and transitive. See also hash 
function.

equivalent types 
Two types, each of which is a subtype of the 
other.

error 
1. A condition which represents an error 
situation.   2. An error situation.

error situation 
A situation in which there is something 
invalid about the program, in contrast to an 
environmental condition such as running 
out of memory or battery power, or 
inability to establish a network connection.

exceptional situation 
A situation that is not conceptually part of 
the normal execution of the program, but 
must be handled some other way.  
Exceptional situations are represented by 
conditions.

exit procedure 
A function that can be called explicitly, 
during the execution of a block statement, 
to terminate the execution of the block 
statement, transfer control to its associated 
exit point, and return zero or more values.

exit point 
A point through which control may be 
transferred.  An exit point established by a 
block statement may have an associated 
exit procedure.
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explicit definition
A definition created by define 
constant, define variable, define 
generic, define macro and the class 
name in define class. See also implicit 
definition.

explicitly defined
(of a class or generic function) defined by 
an explicit definition.

explicitly known
1. (of a class in a library) a class defined by 
define class in the library or in one of 
the libraries it uses. 2. (of a generic function 
in a library) a generic function explicitly 
defined by define generic in the library 
or in one of the libraries it uses, or a generic 
function implicitly defined by the definition 
of a method explicitly known in the library 
or by a slot specification for a class 
explicitly known in the library. 3. (of a 
method in a library) a method defined by 
define method in the library or in one of 
the libraries it uses, or defined by a slot 
specification for a class explicitly known in 
the library.

exported binding
(from a module) A binding that is explicitly 
exported from the module.  Exported 
bindings are available to be imported by 
other modules that use the module.  
Unexported bindings are not available to 
other modules.

expression 
A section of program code that represents a 
value, or the computation of a value.  An 
expression may be part of a larger 
expression, and it may itself have 
subexpressions.

false 
The unique false object, #f.

first-class object 
An object.  The adjective “first-class” is 
used to emphasize that the object may be 
stored in a variable or data structure, may 
be passed as an argument to a function, and 
may be returned as the value of a function.

free class 
A class that may be used freely in multiple 
inheritance.  The opposite of a free class is a 
primary class.

fresh
A collection C is fresh if modification of any 
pre-existing collection's contents can never 
modify the contents of C and if 
modifications to C can never modify the 
contents of any pre-existing collection.  
Immutable collections cannot be modified, 
so a fresh immutable collection can share 
structure with other immutable collections.

fresh copy 
A copy that does not share structure.  
Compare with shallow copy.

freshly allocated
See fresh.

function 
An object used for performing actions and 
returning values.  Functions have a 
parameter list and an optional return value 
specification, which together define the 
function’s signature.  There are two kinds 
of functions: methods and generic 
functions.  A method has a body of code 
which is executed to compute the method’s 
values when the method is called.  A 
generic function consists of a setof methods, 
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and computes its values by selecting and 
calling an appropriate method based on the 
types of the arguments.

general instance 
(of a type) An object that is either a direct 
instance or indirect instance of the type.

general superclass
(of a class) A class that is either a direct 
superclass or indirect superclass of the 
class.

generic function 
A function consisting of a family of 
methods with a common calling protocol.  
A generic function computes its value by 
selecting and calling an appropriate method 
based on the types of the arguments.  See 
also method dispatch.

generic function dispatch 
See method dispatch.

get
(the value of a slot)  To retrieve the value of 
the slot.

getter 
A function that is applied to an object and 
returns the value of one of the object’s slots.

handler 
A function that is used to respond to a 
signaled condition.

hash code 
A conceptual object consisting of a hash id 
and its associated hash state.

hash function 
A function, associated with a table, that 
computes hash code.  All hash functions 
have one argument, a key, and return two 

values, a hash id and a hash state, which 
together represent the hash code. See also 
equivalence predicate.

hash id 
An integer encoding of an object.

hash table
A table.

hash state 
An object of implementation-dependent 
type which is associated with a particular 
hash id and can be used by the 
implementation to determine whether the 
hash id has been invalidated.

identical 
(of two objects) Computationally 
equivalent.  That is, there is no way for any 
portable Dylan program to distinguish 
them; they are the same under the 
equivalence predicate ==.

immutable 
Not capable of being modified after it is 
created.  It is an error to attempt to modify 
an immutable object, though Dylan 
implementations are not required to detect 
this error. The opposite of immutable is 
mutable.

implicit definition
A definition created by define method 
or by the slot specifications of define 
class.

implicitly defined
1. (of a generic function) Created by an 
implicit definition rather than by define 
generic.   2. (of a method) Created by a 
slot specification in a define class 
definition, rather than by define method.
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imported binding
A binding imported from a used module.  A 
binding owned by another module must be 
imported in order to be visible to code 
inside the module.

improper list 
A list that does not have the empty list as 
the tail of its last pair.  An improper list is 
either a dotted list or a circular list.

indirect instance 
(of a type) A direct instance of one of the 
proper subclasses of the type.

indirect superclass
(of a class) A class that is a general 
superclass of one of the class’s direct 
superclasses.

infix operator 
The name of a function or macro that is 
normally called using infix notation.  Infix 
operators must be prefixed by the infix 
operator escape character (“\”) in order to 
be used in any way other than as the 
operator in an infix function call.

init keyword
A keyword specified in a class definition, 
used to initialize a slot. An init keyword 
may be required or optional.

init specification
An init specification provides an initial 
value for the slot or a default value for an 
init-keyword. There are three kinds of init 
specifications. See page 58 for a complete 
description.

initialization argument
A keyword argument supplied to make, 
used to initialize an keyword initializable 
slot.

initialize 
1. (an object) To prepare an object for use, 
by initializing its slots and calling the 
initialize function on the object.  All Dylan 
objects are automatically initialized 
immediately after they are allocated.  2. (a 
slot) To give the slot its initial value.  A 
program can test to see whether a slot has 
been initialized by calling the function 
slot-initialized?  There is no 
mechanism for resetting a slot to the 
uninitialized state. 3. (a variable) To bind 
the variable to its initial value.

instance 
(of a type) A general instance of the type.

instantiable class 
A class that can be used as the first 
argument to make.  The opposite of an 
instantiable class is an uninstantiable class.  
Note that an abstract class may be 
instantiable.

iteration protocol 
A protocol that is common to collections, 
consisting of the functions 
forward-iteration-protocol and 
backward-iteration-protocol.  All 
collections must implement 
forward-iteration-protocol.  Some 
collections that are stable under iteration 
also implement 
backward-iteration-protocol.

iteration stability 
The property of being stable under 
iteration.

iteration binding
A binding associated with a clause in a for 
statement.  Each iteration binding is 
associated with only one clause.
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keyword argument list 
A sequence containing an even number of 
elements that are alternating keywords and 
values (i.e. a sequence of keyword/value 
pairs).  When there is more than one 
keyword/value pair with the same 
keyword, the first such pair determines the 
value associated with that keyword in the 
keyword argument list.

keyword initializable
(of a slot) A slot that may be given an initial 
value by a keyword argument in a call to 
make. See also initialization arguments.

keyword parameter 
(of a function) A parameter that 
corresponds to an optional keyword/value 
pair.  Keyword parameters are specified by 
name rather than position.

keyword/value pair 
Two successive arguments (a keyword and 
a value, respectively) supplied in a function 
call.

library 
A set of modules and code, which is 
available for use by Dylan programs. 
Libraries are the unit of compilation, 
sealing, and optimization.

literal constant 
An object that is specified explicitly in 
program text.  Literal constants are 
immutable.

local precedence order 
(of a class and its direct superclasses) An 
ordering of classes, including the class and 
its direct superclasses, in which the class 
precedes its direct superclasses, and each 

direct superclass precedes all other direct 
superclasses that follow it in the definition 
of the class.

local scope 
A scope that includes a limited section of 
program text.

local binding
A binding created by a local declaration. 
Local bindings are visible within the 
remainder of the smallest enclosing body 
containing the declaration which creates the 
bindings.

mandatory keyword 
(of a generic function) A keyword that must 
be recognized by all of the methods of that 
generic function.  Mandatory keywords are 
specified in the generic function’s 
parameter list, after #key or as the key: 
initialization argument to make of 
<generic-function>.

method 
A basic callable unit of code.  It includes a 
parameter list, a return value specification 
and a body.

method dispatch 
The process of determining which method 
to call when a generic function is applied to 
arguments.

module 
A namespace of bindings.

module binding
A binding that can be referenced from any 
code associated a particular module.
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most specific method 
The method whose specializers most closely 
match the arguments of a function call. A 
method specialized on a subclass is more 
specific than a method specialized on 
superclasses.

multimethod 
A method that has more than one 
specialized parameter.

multiple inheritance 
Inheritance from more than one direct 
superclass. See also single inheritance.

multiple values 
Zero or more values returned by an 
expression.  Used in contrast to one value, 
as in “this function returns multiple values.”

mutable 
Capable of being modified after it is 
created.  The opposite of mutable is 
mutable.

named value reference
An expression which is a reference to a 
binding.

natural order 
The order in which elements of a collection 
are traversed by the iteration protocol for a 
particular iteration. If a collection is stable 
under iteration, every iteration over the 
collection has the same natural order, which 
defines a natural order for the collection 
itself.

next method 
(during a generic function call) The method 
that is next most specific, after the method 
that is currently executing, in the sequence 
of applicable methods for that generic 
function call.

next-method parameter 
A parameter, usually called next-method.  
The value of the next-method parameter is 
automatically supplied by the generic 
function dispatch mechanism.  It is either 
#f (if there is no next method) or a 
function that calls the next method after 
defaulting any unsupplied arguments.  
There is no way for a user to specify a 
different next method.

non-local exit 
A transfer of control, through an exit point, 
out of a local region of code, that terminates 
the normal execution of that code and the 
normal return of values.

normal exit
Completing execution and returning 
without taking a non-local exit.

object 
A unit of data in a Dylan program.  Objects 
are instances of classes, may be stored in 
variables, slots, and collections, may be 
passed as arguments to functions, and may 
be returned as values of functions.  In 
Dylan, functions and classes are themselves 
objects.

open class 
A class that may have subclasses that are 
not explicitly defined in the same library.  
The opposite of an open class is a sealed 
class.

open generic function 
A generic function that may have methods 
that are not explicitly defined in the same 
library.  The opposite of an open generic 
function is a sealed generic function.
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owned 
(of a binding, by a module) Created by a 
create clause in the module’s define 
module definition, or by a definition 
associated with the module.

pair 
An instance of <pair>.

parameter 
(of a function) A variable that is declared in 
the parameter list of a function and specifies 
part of the function’s calling protocol.  
Parameters are lexically bound within the 
function body, and are bound to their initial 
values when the function is called.  Dylan 
supports required parameters, rest 
parameters, keyword parameters, and 
next-method parameters.

parameter list
The part of a function definition that 
specifies the function’s calling protocol. See 
also signature.

predicate function 
A function that returns a true or false 
value.  The names of predicate functions, by 
convention, end in a question mark.

primary class 
A class that may be used only as the 
primary superclass in multiple inheritance.  
A class may not have two primary 
superclasses unless one is a subclass of the 
other.  The opposite of a primary class is a 
free class.

proper list 
A list that has the empty list as the tail of its 
last pair.

proper subclass 
(of a class) A class which is a subclass of the 
class, but is not identical to the class.

proper subtype 
(of a type) A type which is a subtype of the 
type, but is not equivalent to the type. See 
also equivalent types.

protocol 
1. (of a class) The methods that all 
subclasses of the class either implement or 
inherit.   2. (of a function, esp. a generic 
function) The signature of the function.

pseudosubtype
Arelation between types.  The type T1 is a 
pseudosubtype of the type T2 if T1 is a 
subtype of the base type of T2 and T1 and T2 
are not disjoint.

required parameter 
(of a function) A parameter that 
corresponds to an argument that must be 
supplied when the function is called.  
Required parameters are specified in a fixed 
order before other parameters, and their 
corresponding arguments must be supplied 
in the same order.  Required parameters 
may be specialized or unspecialized.  
Compare rest parameter, keyword 
parameter, and next-method parameter.

rest parameter 
(of a function) A parameter that allows a 
function to accept a variable number of 
arguments following those that correspond 
to the required parameters.  The additional 
arguments are stored in a sequence.
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return value specification 
An optional part of a function definition 
that specifies the number and types of the 
values returned by the function. See also 
signature.

sealed class 
A class that cannot have direct subclasses 
other than those explicitly defined in the 
same library.  The opposite of a sealed class 
is an open class.

sealed generic function 
A generic function that cannot have 
methods that are not explicitly defined in 
the same library.  The opposite of a sealed 
generic function is an open generic 
function.

sequence
An instance of <sequence>, a type of 
collection which uses successive 
non-negative integers as keys.

set 
(the value of a slot)  To replace the value of 
the slot with a new value.

setter 
A function used to set the value of a slot.  
By convention, the name of a setter is the 
name of the getter concatenated with the 
suffix -setter.

shadow 
(a binding) To hide the binding within a 
portion of program text, by creating a new 
local binding with the same name.

shallow copy 
(of an object) A new object that has the 
same contents as the object.  The contents 
are not copied, but are the same objects 
contained in the original object.

signature 
(of a function) The parameter list and 
return value specification of the function.

single inheritance 
Inheritance from only one direct superclass. 
See also multiple inheritance.

singleton 
A type used to indicate an individual 
object.  A singleton has only one instance.

slot 
A unit of local storage available within an 
instance or a class, which is used to store 
state in the instance or class.

slot accessor 
A getter or setter.

specialize 
1. (a variable) To restrict the variable to 
values that are general instances of a 
particular type.   2. (a generic function) To 
define a method for the generic function 
that is applicable only to instances of a 
particular type or types. 3. (a method) To 
specify the types of the parameters of the 
method.

specializer 
A type, especially when it is used to 
specialize a parameter, variable, or slot.

stable under iteration 
(of a collection) The proprty of a collection 
that any two iterations over the collection 
are guaranteed to produce the same values 
in the same order (unless, of course, the 
collection has been modified). See also 
natural order and sequence.
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stretchy collection 
A collection that may grow or shrink to 
accomodate adding or removing elements.

table 
An object, also known as a hashtable, that 
maps arbitrary keys to objects.  Each table 
has an associated equivalence predicate 
which is used to compare keys.  The table 
maps keys that are equivalent under the 
predicate to the same table element.

true 
1. The canonical true value, #t.  2. Any 
object other than the unique false value, #f.

type 
A Dylan object that categorizes objects. See 
“Overview” on page 47.

type equivalent
See equivalent types.

type-for-copy 
(of an object)  An instantiable type suitable 
for making copies of an object.  Instances of 
the type-for-copy must be mutable.

unbounded sequence
A sequence that is infinite or circular.

uninstantiable class 
A class that cannot be used as the first 
argument to make.  The opposite of an 
uninstantiable class is an instantiable class.

visible modification 
(with respect to an equivalence predicate) 
A modification that changes the 
equivalence class of the object.  The 
modifications that are visible to an 
equivalence predicate are determined by 
the definition of the predicate.

white space 
Any number of contiguous space, tab, 
newline, and newpage characters.  The 
amount of contiguous white space is not 
significant in program code.
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